Chứng Minh Hai Tam Giác đồng Dạng Lớp 8 - Abcdonline
Có thể bạn quan tâm
Phương pháp chứng minh 2 tam giác đồng dạng dành cho học sinh lớp 8 qua các cách chứng minh đồng dạng đã được học.
Hai tam giác ABC và DEF đồng dạng với nhau khi nào? Cách chứng minh ra sao?
Các trường hợp đồng dạng của tam giác
– Trường hợp đồng dạng thứ nhất: 3 cạnh tương ứng tỉ lệ với nhau (c – c – c)
Xét ∆ABC và ∆DEF, ta có :
=> ∆ABC ~ ∆DEF (c – c – c)
– Trường hợp đồng dạng thứ 2: 2 cạnh tương ứng tỉ lệ với nhau – góc xen giữa hai cạnh bằng nhau(c – g – c)
Xét ∆ABC và ∆DEF, ta có :
=> ∆ABC ~ ∆DEF (c – g – c)
– Trường hợp đồng dạng thứ 3: hai góc tương ứng bằng nhau (g – g)
Xét ∆ABC và ∆DEF, ta có :
=> ∆ABC ~ ∆DEF (g – g)
Các trường hợp đồng dạng của tam giác vuông
1. Định lí 1: (cạnh huyền – cạnh góc vuông)
Nếu cạnh huyền và cạnh góc vuông của tam giác này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác kia thì hai tam giác đồng dạng.
2. Định lí 2: (hai cạnh góc vuông)
Nếu hai cạnh góc vuông của tam giác này tỉ lệ với hai cạnh góc vuông của tam giác kia thì hai tam giác đồng dạng.
3. Định lí 3: (góc)
Nếu góc nhọn của tam giác này bằng góc nhọn của tam giác kia thì hai tam giác đồng dạng.
Bài tập chứng minh tam giác đồng dạng
Muốn chứng minh 2 tam giác đồng dạng các em có thể sử dụng các trường hợp đồng dạng ở trên, định lý talet (2 đường thẳng song song).
Theo dõi các bài tập có lời giải dưới đây:
Bài 1: Cho ∆ABC (AB < AC), có AD là đường phân giác trong. Ở miền ngoài ∆ABC vẽ tia Cx sao cho . Gọi I là giao điểm của Cx và AD. cmr :
a) ∆ADB đồng dạng ∆CDI.
b)
c) AD2 = AB.AC – BD.DC
Giải
a) ∆ADB và ∆CDI , ta có : (gt)
(đối đỉnh)
=> ∆ADB ~ ∆CDI
b) ∆ABD và ∆AIC , ta có : (∆ADB ~ ∆CDI)
(AD là phân giác)
=> ∆ABD ~ ∆AIC
=>
c) => AD.AI = AB.AC (1)
mà : (∆ADB ~ ∆CDI )
=> AD.DI = BD.CD (2)
từ (1) và (2) : AB.AC – BD.CD = AD.AI – AD.DI = AD(AI – DI ) = AD.AD = AD2
Bài 2: Cho tam giác ABC vuông tại A, có đường cao AH . Chứng minh các hệ thức :
a. AB2 = BH.BC và AC2 = CH.BC
b. AB2 +AC2 = BC2
c. AH2 = BH.CH
d. AH.BC = AB.AC
Giải.
Xét hai ∆ABC và ∆ HAC, ta có:
a. AC2 = CH.BC :
là góc chung.
=> ∆ABC ~ ∆HAC (g – g)
=>
=> AC2 = CH.BC (1)
Cmtt : AB2 = BH.BC (2)
b. AB2 +AC2 = BC2
Từ (1) và (2), ta có :
AB2 +AC2 = BH.BC + CH.BC = (BH + CH)BC = BC2
c. AH2 = BH.CH :
Xét hai ∆HBA và ∆ HAC, ta có :
cùng phụ
=> ∆HBA ~ ∆HAC (g – g)
=>
=> AH2 = BH.CH
d. AH.BC = AB.AC :
Ta có : (∆ABC ~ ∆HAC) => AH.BC = AB.AC.
Bài 3: Cho ∆ABC nhọn. kẻ đường cao BD và CE. vẽ các đường cao DF và EG của ∆ADE. Chứng minh
a) ∆ABD đồng dạng ∆AEG.
b) AD.AE = AB.AG = AC.AF
c) FG // BC
Giải
a) xét ∆ABD và ∆AEG, ta có : BD ⊥ AC (BD là đường cao)
EG ⊥ AC (EG là đường cao)
=> BD // EG
=> ∆ABD ~ ∆AGE
b) =>
=> AD.AE = AB.AG (1)
cmtt, ta được : AD.AE = AC.AF (2)
từ (1) và (2) suy ra : AD.AE = AB.AG = AC.AF
c) xét ∆ABC, ta có : AB.AG = AC.AF (cmt)
=> FG // BC (định lí đảo talet)
Bài 4: Cho ∆ABC có các đường cao BD và CE cắt nhau tại H. Chứng minh :
a) ∆HBE đồng dạng ∆HCE.
b) ∆HED đồng dạng ∆HBC và
c) cho biết BD = CD. Gọi M là giao điểm của AH và BC. chứng minh : DE vuông góc EM.
Giải
a) xét ∆HBE và ∆HCD, ta có :
(gt)
(đối đỉnh)
=> ∆HBE ~ ∆HCD (g – g)
b) ∆HED và ∆HBC, ta có :
(∆HBE ~ ∆HCD)
=>
(đối đỉnh)
=> ∆HED ~ ∆HBC (c – g – c)
=> (1)
mà : Đường cao BD và CE cắt nhau tại H (gt)
=> H là trực tâm.
=> AH ⊥ BC tại M.
=>
mặt khác:
=> (2)
từ (1) và (2) :
hay:
c) cmtt câu b, ta được: (3)
xét ∆BCD, ta có :
DB = DC (gt)
=> ∆BCD cân tại D
=>
mà: (∆HED ~ ∆HBC)
=>
mà:
(cmt)
=>
hay:
=> ED ⊥ EM.
Hình học 8 - Tags: đồng dạng, tam giác, tam giác đồng dạng, toán 8Tóm tắt lý thuyết Hình học THCS lớp 6, 7, 8, 9
Từ khóa » Công Thức Hai Tam Giác đồng Dạng
-
Thế Nào Là 2 Tam Giác đồng Dạng? Tổng Hợp Lý Thuyết Và Bài Tập áp ...
-
Lý Thuyết Hai Tam Giác đồng Dạng | SGK Toán Lớp 8
-
Hai Tam Giác động Dạng Là Gì? Các Trường Hợp đồng Dạng Của Tam ...
-
Tam Giác đồng Dạng - Vườn Toán
-
Chứng Minh Hai Tam Giác đồng Dạng Và ứng Dụng - TMT - QLNT
-
[CHUẨN NHẤT] Thế Nào Là Hai Tam Giác đồng Dạng - TopLoigiai
-
Tam Giác đồng Dạng Là Gì ? Cách Chứng Minh Hai Tam Giác đồng Dạng
-
Lý Thuyết Hai Tam Giác đồng Dạng Toán 8
-
Lý Thuyết Hai Tam Giác đồng Dạng
-
Định Nghĩa, Tính Chất Hai Tam Giác đồng Dạng - Hình Học 8 - Toán Lớp 8
-
Khái Niệm 2 Tam Giác đồng Dạng, Tính Chất Và Cách Chứng Minh
-
Cách Chứng Minh Hai Tam Giác đồng Dạng Và ứng Dụng - Toán Cấp 2
-
Hai Tam Giác đồng Dạng Là Gì? Chứng Minh Hai Tam Giác đồng Dạng
-
Thế Nào Là Hai Tam Giác đồng Dạng? Lý Thuyết Và Trường ... - Mobitool