Chứng Minh Rằng Nếu A + B + C = 0 Thì \(A=\left(\frac{a-b}{c}+\frac{b-c ...

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Thư viện số
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM

Chính thức mở đề thi thử tốt nghiệp THPT trên máy tính từ 27/12/2025, xem ngay.

OLM Class tuyển sinh lớp bứt phá học kỳ II! Đăng ký ngay

  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
DH Đào Huy Hoàng 5 tháng 5 2015 - olm

Chứng minh rằng nếu a + b + c = 0 thì \(A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{c}\right).\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{c}{c-a}\right)=9\)

#Hỏi cộng đồng OLM #Toán lớp 8 1 LH Lê Hoàng Sơn 22 tháng 4 2019

*Đặt P = (a-b)/c + (b-c)/a + (c-a)/b, ta có:P = (a-b)/c + (b-c)/a + (c-a)/b=> abc.P = ab(a-b) + bc(b-c) + ca(c-a)= ab(a-b) + bc(b-a + a-c) + ca(c-a) = ab(a-b) - bc(a-b) - bc(c-a) + ca(c-a) = b(a-b)(a-c) + c(c-a)(a-b) = (a-b)(a-c)(b-c) => P = (a-b)(a-c)(b-c)/abc *Đặt Q = c/(a-b) + a/(b-c) + b/(c-a), ta có:Vì a+b+c = 0 => a+b = -c ; b+c = -a ; c+a = -bQ = c/(a-b) + a/(b-c) + b/(c-a) => (a-b)(b-c)(c-a).Q = c(b-c)(c-a) + a(a-b)(c-a) + b(a-b)(b-c) = c(b-c)(c-a) + (-b-c)(a-b)(c-a) + b(a-b)(b-c) = c(b-c)(c-a) – c(a-b)(c-a) – b(a-b)(c-a) + b(a-b)(b-c) = c(c-a)(2b-a-c) + b(a-b)(a+b-2c) = 3bc(c-a) – 3bc(a-b) = 3bc(b+c-2a) = 3bc(-a-2a) = -9abc => Q = -9abc/(a-b)(b-c)(c-a) = 9abc /(a-b)(b-c)(a-c) Vậy P.Q = 9 (đpcm)

Đúng(0) Các câu hỏi dưới đây có thể giống với câu hỏi trên TL Trần Lê Anh Quân 12 tháng 8 2019 - olm

Chứng minh rằng nếu a,b,c khác nhau đôi một thì 

b. \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)nếu \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

#Hỏi cộng đồng OLM #Toán lớp 8 1 ZC zZz Cool Kid_new zZz 12 tháng 8 2019

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Leftrightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\)

\(=\frac{b}{a-c}+\frac{c}{b-a}\)

\(=\frac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 1 )Tương tự,ta có:

\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-ba+ba-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 2 )\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+cb-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 3 )Cộng vế theo vế của ( 1 );( 2 );( 3 ) suy ra đpcm 

Đúng(0) BC Bé con 2 tháng 8 2017 - olm

Chứng minh rằng nếu a + b + c = 0 thì: 

         \(A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)

#Hỏi cộng đồng OLM #Toán lớp 8 2 VT Võ Thị Quỳnh Giang 3 tháng 8 2017

bài này có trong nâng cao phát triển toán 8 tập 1 nè!

Đúng(0) DD Đinh Đức Hùng 12 tháng 9 2017

Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)

Ta có : \(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=+\frac{c}{a-b}\left(\frac{b^2-bc+ac-a^2}{ab}\right)\)

\(=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)

Tương tự : \(M.\frac{a}{b-c}=1+\frac{2a^3}{abc};M.\frac{b}{c-a}=+\frac{2b^3}{abc}\)

\(\Rightarrow A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=9\)(vì \(a^3+b^3+c^3=3abc\))

Đúng(0) Xem thêm câu trả lời TT tran thi mai anh 19 tháng 3 2019

Chứng minh rằng :Nếu a+b+c=0 thì

Q=\(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)=9

#Hỏi cộng đồng OLM #Toán lớp 8 1 AH Akai Haruma Giáo viên 20 tháng 3 2019

Lời giải:

Đặt \((\frac{a-b}{c}, \frac{b-c}{a}, \frac{c-a}{b})=(x,y,z)\)

Khi đó: \(Q=(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)

Ta có:

\(x+y=\frac{a-b}{c}+\frac{b-c}{a}=\frac{a^2-ab+bc-c^2}{ac}=\frac{b(c-a)-(c-a)(c+a)}{ca}\)

\(=\frac{b(c-a)-(c-a)(-b)}{ac}=\frac{2b(c-a)}{ca}\) (do $a+b+c=0$)

\(\Rightarrow \frac{x+y}{z}=\frac{2b(c-a)}{ca}.\frac{b}{c-a}=\frac{2b^2}{ca}=\frac{2b^3}{abc}\)

Hoàn toàn tương tự:

\(\frac{y+z}{x}=\frac{2c^3}{abc}; \frac{x+z}{y}=\frac{2a^3}{abc}\)

Do đó:

\(Q=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{x+z}{y}=3+\frac{2(a^3+b^3+c^3)}{abc}=3+\frac{2[(a+b)^3-3ab(a+b)+c^3]}{abc}\)

\(=3+\frac{2[(-c)^3-3ab(-c)+c^3]}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)

Ta có đpcm.

Đúng(0) WI WHO I AM 2 tháng 5 2019

2(a^3+b^3+c^3)= 2[a+b)^3........

sao tách nhanh được hay vậy, giúp em giải thích hộ với:))

Đúng(0) NT Nguyễn Thị Duyên 1 tháng 5 2016 - olm

chứng minh rằng nếu a+b+c=0 thì:

\(A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)

 

#Hỏi cộng đồng OLM #Toán lớp 8 2 LC Lê Chí Cường 1 tháng 5 2016

Đặt \(\frac{a-b}{c}=x,\frac{b-c}{a}=y,\frac{c-a}{b}=z\)

=>\(\frac{c}{a-b}=\frac{1}{x},\frac{a}{b-c}=\frac{1}{y},\frac{b}{c-a}=\frac{1}{z}\)

=>\(A=\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=>\(A=x.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+y.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+z.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=>\(A=1+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+1+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+1\)

=>\(A=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Ta thấy: \(\frac{y+z}{x}=\frac{\frac{b-c}{a}+\frac{c-a}{b}}{\frac{a-b}{c}}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right):\frac{a-b}{c}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right).\frac{c}{a-b}\)

\(=\left[\frac{\left(b-c\right).b}{a.b}+\frac{\left(c-a\right).a}{a.b}\right].\frac{c}{a-b}=\left(\frac{b^2-bc}{ab}+\frac{ac-a^2}{ab}\right).\frac{c}{a-b}\)

\(=\left(\frac{b^2-bc+ac-a^2}{ab}\right).\frac{c}{a-b}=\left[\frac{\left(ac-bc\right)-\left(a^2-b^2\right)}{ab}\right].\frac{c}{a-b}\)

\(=\left[\frac{c.\left(a-b\right)-\left(a+b\right).\left(a-b\right)}{ab}\right].\frac{c}{a-b}=\left[\frac{\left(c-a-b\right).\left(a-b\right)}{ab}\right].\frac{c}{a-b}\)

\(=\frac{c-a-b}{ab}.\left(a-b\right).\frac{c}{a-b}=\frac{c-a-b}{ab}.c=\left(c-a-b\right).\frac{c}{ab}=\left(2c-a-b-c\right).\frac{c}{ab}\)

Vì a+b+c=0=>2a-(a+b+c)=2c=>2c-a-b-c=2c

=>\(\frac{y+z}{x}=\left(2c-a-b-c\right).\frac{c}{ab}=2c.\frac{c}{ab}=\frac{2c^2}{ab}=\frac{2c^3}{abc}\)

=>\(\frac{y+z}{x}=\frac{2c^3}{abc}\)

Chứng minh tương tự, ta có:

\(\frac{z+x}{y}=\frac{2a^3}{abc},\frac{x+y}{z}=\frac{2b^3}{abc}\)

=>\(A=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=3+\frac{2c^3}{abc}+\frac{2a^3}{abc}+\frac{2b^3}{abc}\)

=>\(A=3+\frac{2c^3+2a^3+2b^3}{abc}=3+\frac{2.\left(a^3+b^3+c^3\right)}{abc}\)

Lại có: 

Áp dụng bất đẳng thức, ta có: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=>a^3+b^3=\left(a+b\right)^3-3a^2b-3ab^2\)

=>\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3abc-3a^2b-3ab^2\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left[\left(a+b\right)^2-\left(a+b\right).c+c^2-3ab\right]\)

Vì a+b+c=0

=>\(\left(a+b+c\right).\left[\left(a+b\right)^2-\left(a+b\right).c+c^2-3ab\right]=0\)

=>\(a^3+b^3+c^3-3abc=0=>a^3+b^3+c^3=3abc\)

Thay vào A, ta có:

\(A=3+\frac{2.\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=3+2.3=3+6=9\)

=>ĐPCM

Đúng(0) HT Hà Thị Quỳnh 2 tháng 5 2016

Từ chỗ  lại có bạn làm hơi dài mình sẽ làm cách khác ngắn hơn 

Xét \(a^3+b^3+c^3=\left(a+b\right)^3-3a^2b-3ab^2+c^3\)

\(=\text{[}\left(a+b\right)^3+c^3\text{]}-3ab\left(a+b\right)\) (I)

Mà  \(\text{ }a+b+c=0\Rightarrow a+b=-c\) thay vào (I) , ta được 

\(a^3+b^3+c^3=\text{[}\left(-c\right)^3+c^3\text{]}-3ab\left(-c\right)\)

                             \(=3abc\)

Sau đó thay vào rồi tính

Đúng(0) Xem thêm câu trả lời TT Thanh Thủy Nguyễn 9 tháng 4 2017 - olm

Chứng minh rằng nếu a + b + c = 0 thì:

           A=\(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)

Thanks mn nha!

#Hỏi cộng đồng OLM #Toán lớp 8 1 TY thánh yasuo lmht 9 tháng 4 2017

Tự nghĩ nha, đây là 1 dạng của bất đảng thức:\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

Cố gắng đưa bài toán của bạn về dấu bằng kia

Cách CM xem trang 43, nâng cao phát triển toán 8 tập 2.

MÌNH GỢI Ý GẦN HẾT RỒI,  BẠN TỰ CM NỐT RỒI BẤM ĐÚNG CHO MÌNH NHÉ

Đúng(0) D DanAlex 17 tháng 6 2017 - olm

Cho a;b;c đôi một khác nhau và khác 0. Chứng minh rằng:

Nếu a + b + c = 0 thì \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\times\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)

#Hỏi cộng đồng OLM #Toán lớp 8 1 NV nguyễn vũ gia hưng 8 tháng 3 2021

tên sai kìa,EKAWADA CONAN mà

Đúng(0) DD đoàn danh dũng 24 tháng 3 2016 - olm

chứng minh rằng nếu a+b+c=0 thì :

\(A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)

#Hỏi cộng đồng OLM #Toán lớp 8 0 MT Mai Thanh Hoàng 19 tháng 8 2017 - olm

Chứng minh rằng nếu a,b,c khác nhau thì \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

#Hỏi cộng đồng OLM #Toán lớp 8 1 NQ Nguyễn Quốc Gia Huy 19 tháng 8 2017

\(VT=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{-1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}=VP\)

Đúng(0) MT Mi Trần 12 tháng 7 2016 - olm

Cho \(\frac{a-\left(c-b\right)}{b-c}+\frac{b-\left(a-c\right)}{c-a}+\frac{c-\left(b-a\right)}{a-b}=3\).

Chứng minh rằng \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

#Hỏi cộng đồng OLM #Toán lớp 8 2 HL Hoàng Lê Bảo Ngọc 13 tháng 7 2016

Ta có : \(\frac{a-\left(c-b\right)}{b-c}+\frac{b-\left(a-c\right)}{c-a}+\frac{c-\left(b-a\right)}{a-b}=3\)

\(\Leftrightarrow\frac{a+\left(b-c\right)}{b-c}-1+\frac{b+\left(c-a\right)}{c-a}-1+\frac{c+\left(a-b\right)}{a-b}-1=0\)

\(\Leftrightarrow\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{a+c}{\left(b-c\right)\left(a-b\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a^2-b^2+c^2-a^2+b^2-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

Đúng(0) N nguyentancuong 13 tháng 7 2016

Từ gt ta có : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)0

Từ đó suy ra điều phải chứng minh

Đúng(0) Xem thêm câu trả lời Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • SV Sinh Viên NEU 8 GP
  • NT Nguyễn Thị Thảo Linh 4 GP
  • T1 Tortoise-180 4 GP
  • O ◥◣︿◢◤Ⓝⓐⓜⓚⓗôⓝⓖⓝⓗâⓨ╰(*°▽°*)╯ 4 GP
  • DA Dương Anh Thư 2 GP
  • KV Khiet Vũ Thanh 2 GP
  • NQ Nguyễn Quỳnh Chi 2 GP
  • TT Thân Thế Anh 2 GP
  • TL Trần Lê Thảo Nguyên VIP 2 GP
  • QB Quản Bảo Lâm 2 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học trực tuyến OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Cho A B C 0 Chứng Minh Ab/c+bc/a+ca/b =a+b+c