Chuyên đề: Định Lí Lagrange Và ứng Dụng
Có thể bạn quan tâm
- Trang Chủ
- Đăng ký
- Đăng nhập
- Upload
- Liên hệ
Chúng ta sẽ đi tìm hiểu 3 bài toán sử dụng định lí Lagrange trong chương trình THPT như sau:
I. Sử dụng định lí Lagrange chứng minh bất đẳng thức.
II. Sử dụng định lí Lagrange chứng minh phương trình có nghiệm.
III. Sử dụng định lí Lagrange giải phương trình.
6 trang ngochoa2017 12721 4 Download Bạn đang xem tài liệu "Chuyên đề: Định lí Lagrange và ứng dụng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trênChuyên đề: ĐỊNH LÍ LAGRANGE VÀ ỨNG DỤNG A. GIỚI THIỆU Định lí Lagrange được phát biểu như sau: Cho hàm số F(x) liên tục trên [a,b] và có đạo hàm trong khoảng (a,b) thì luôn tồn tại sao cho: Chúng ta sẽ đi tìm hiểu 3 bài toán sử dụng định lí Lagrange trong chương trình THPT như sau: I. Sử dụng định lí Lagrange chứng minh bất đẳng thức. II. Sử dụng định lí Lagrange chứng minh phương trình có nghiệm. III. Sử dụng định lí Lagrange giải phương trình. B. NỘI DUNG I. SỬ DỤNG ĐỊNH LÍ LAGRANGE CHỨNG MINH BẤT ĐẲNG THỨC. * Phương pháp Từ định lí Lagrange , nếu thì: Vậy Từ định lí Lagrange để áp dụng được kết quả trên, điều quan trọng nhất là xác định được hàm số F(x). *Ví dụ minh họa VD1: CMR nếu th×: Giải Bất đẳng thức đã cho tương đương với: Xét hàm số: liên tục trên, và có đạo hàm trong khoảng . Theo định lí Lagrange luôn tồn tại sao cho: Ta có: (đpcm). NX: Điều quan trọng hơn cả trong bài toán này là chúng ta nhận ra được hàm số F(x) qua việc biến đổi tương đương BPT đã cho. Ta xét VD 2 VD 2: Cho . Chứng minh: Giải BĐT đã cho tương đương với: Đặt với Ta có: AD định lí Lagrange đối với hàm số: trên , thì tồn tại sao cho: . Từ (1) suy ra: Suy ra: (đpcm). NX: Bài này khó hơn bài trên ở chỗ phải tinh ý lấy logaNepe hai vế mới nhận ra đựơc hàm số f (x). VD 3: Cho a<b<c. CMR: Giải Xét hàm số: Theo định lí Lagrange tồn tại sao cho: Ta thấy: Từ (1) Do đó, từ . Suy ra: II. SỬ DỤNG ĐỊNH LÍ LAGRANGE CHỨNG MINH PHƯƠNG TRÌNH CÓ NGHIỆM. *Phương pháp: Từ định lí Lagrange, nếu F(b)-F(a)=0 thì tồn tại sao cho: phương trình có nghiệm thuộc Để áp dụng được định lí Lagrange phải nhận ra hàm số F (x) (thực ra nó là nguyên hàm của hàm số f(x)). Dạng bài toán này làm theo các bước sau: Bước 1: Xác định hàm số F(x) liên tục trên [a,b] và có đạo hàm trên (a,b), thoả mãn: a. F'(x)=f(x). b. F(b)-F(a)=0. Bước 2: Khi đó tồn tại sao cho: phương trình f(x)= 0 có nghiệm . *Ví dụ minh hoạ: VD1: CMR phương trình: có nghiệm với mọi a,b,c. Giải Xét hàm số: Dễ dàng nhận thấy: Khi đó tồn tại sao cho: Vậy phương trình đã cho có nghiệm thuộc khoảng . VD 2: Giả sử: . CMR phương trình: có nghiệm thuộc khoảng (0, 1) Giải Xét hàm số: liên tục trên [0,1] và có đạo hàm trong khoảng (0,1). Ta có: Khi đó tồn tại sao cho: Vậy phương trình đã cho có nghiệm thụôc khoảng (0,1). Từ VD2 ta có thể giải được bài toán sau: VD3: Giả sử: . CMR phương trình: có nghiệm thuộc khoảng (0,1). Giải Xét hàm số: Nhận thấy, F(x) liên tục trên [0,1] và có đạo hàm trong khoảng (0,1). Ta có: Khi đó tồn tại sao cho: V ì n ên ta c ó: . V ậy ph ư ơng tr ình đ ã cho c ó nghi ệm thu ộc kho ảng (0,1). III. SỬ DỤNG ĐỊNH LÍ LAGRANGE GI ẢI PH Ư ƠNG TR ÌNH. * Phương pháp: Đ ể áp d ụng đ ịnh l í Lagrange vào việc giải phương trình ta thực hiện theo các bước sau đây: Bước 1: Gọi l à nghi ệm c ủa ph ư ơng tr ình. Bước 2: Biến đổi phương trình về dạng thích hợp , từ đó chỉ ra hàm số liên tục trên [a,b] và có đạo hàm trên khoảng (a,b). Khi đó theo định lí Lagrange tồn tại sao cho: (*) Bước 3: Giải (*), ta xác định được . Bước 4: Thử lại * Ví dụ minh họa: VD 1: Giải phương trình: . Giải Gọi là nghiệm của phương trình đã cho. Ta được: (1) Xét hàm số: . Khi đó: (1) Vì F(t) liên tục trên [3,4] và có đạo hàm trong khoảng (3,4), do đó theo định lí Lagrange tồn tại sao cho: Thử lại và thấy đúng. Vậy phương trình có hai nghiệm x=0 và x=1. VD 2: Giải phương trình: Giải Gọi là nghiệm của phương trình đã cho, ta có: (2). Xét hàm số: , khi đó: Vì F(t) liên tục trên [2,3] và có đạo hàm trên (2,3), do đó theo định lí Lagrange luôn tồn tại sao cho: Thử lại thấy đúng. vậy phương trình có hai họ nghiệm và . C. BÀI TẬP ÁP DỤNG 1. CMR nếu x>y> 0 thì 2. CMR phương trình: 3. Giải các phương trình sau: 1. 2.
Tài liệu đính kèm:
- On thi DHDINH LI LAGRANGE VA UNG DUNG.doc
- Giáo án Giải tích 12 cơ bản - Trường THPT Ngô Quyền
Lượt xem: 1241 Lượt tải: 0
- Giáo án Giải tích 12 - GV: Ngô Kiều Lượng - Tiết 2: Sự đồng biến, nghịch biến của hàm số (tt)
Lượt xem: 826 Lượt tải: 0
- Giáo án Giải tích 12 nâng cao tiết 51: Luyện tập
Lượt xem: 926 Lượt tải: 0
- Giáo án Giải tích 12 - Tiết 13 đến Tiết 17
Lượt xem: 816 Lượt tải: 0
- Đề thi thử đại học lần thứ nhất môn: Toán khối A, B, D
Lượt xem: 976 Lượt tải: 0
- Giáo án Giải tích cơ bản 12 tiết 45: Đề kiểm tra 45’
Lượt xem: 1141 Lượt tải: 0
- Giáo án Giải tích lớp 12 - Tiết 63 - Bài 3: Luyện tập ( 1 tiết)
Lượt xem: 827 Lượt tải: 0
- Giáo án Giải tích 12 - GV: Trần Sĩ Tùng - Tiết 53: Tích phân (tt)
Lượt xem: 1017 Lượt tải: 0
- Chủ đề 8 nguyên hàm, tích phân và ứng dụng
Lượt xem: 1391 Lượt tải: 0
- Đề 2 thi tuyển sinh đại học, cao đẳng năm 2002 môn thi: Toán, Khối A
Lượt xem: 1194 Lượt tải: 0
Copyright © 2024 Lop12.net - Giáo án điện tử lớp 12, Sáng kiến kinh nghiệm hay, chia sẻ thủ thuật phần mềm
Từ khóa » định Lý Lagrange Giải Tích
-
Định Lí Lagrange Và ứng Dụng - Đề Thi Mẫu
-
Chứng Minh định Lý Lagrange - Giải Tích - Diễn đàn Toán Học
-
[TOÁN CAO CẤP/GIẢI TÍCH ] ĐỊNH LÝ LAGRANGE ... - YouTube
-
TOÁN CAO CẤP 2 - ĐỊNH LÝ Rolle, Lagrange - Câu Cho điểm
-
Định Lý Lagrange Và ứng Dụng - Giáo Án, Bài Giảng
-
Các định Lí Về Giá Trị Trung Bình (phần 1) | Toán Học
-
[TOÁN CAO CẤP/GIẢI TÍCH ] ĐỊNH LÝ ...
-
[PDF] TRƯỜNG THPT CHUYÊN TIỀN GIANG
-
Định Lý Lagrange - Tài Liệu Text - 123doc
-
Một Số ứng Dụng Của định Lý Lagrange - Tài Liệu Text - 123doc
-
[PDF] MỘT SỐ PHƯƠNG PHÁP HÀM ĐỂ GIẢI PHƯƠNG TRÌNH VÀ ... - VNU
-
[PDF] BỘ GIÁO DỤC VÀ ĐÀO TẠO
-
Một Số ứng Dụng Của định Lý Lagrange Trong đại Số | Xemtailieu