Chuyên đề: Định Lí Lagrange Và ứng Dụng

  • Trang Chủ
  • Đăng ký
  • Đăng nhập
  • Upload
  • Liên hệ

Lớp 12, Giáo Án Lớp 12, Bài Giảng Điện Tử Lớp 12

Trang ChủToán Học Lớp 12Giải Tích Lớp 12 Chuyên đề: Định lí Lagrange và ứng dụng Chuyên đề: Định lí Lagrange và ứng dụng

Chúng ta sẽ đi tìm hiểu 3 bài toán sử dụng định lí Lagrange trong chương trình THPT như sau:

 I. Sử dụng định lí Lagrange chứng minh bất đẳng thức.

 II. Sử dụng định lí Lagrange chứng minh phương trình có nghiệm.

 III. Sử dụng định lí Lagrange giải phương trình.

 

doc 6 trang Người đăng ngochoa2017 Lượt xem 12721Lượt tải 4 Download Bạn đang xem tài liệu "Chuyên đề: Định lí Lagrange và ứng dụng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trênChuyên đề: ĐỊNH LÍ LAGRANGE VÀ ỨNG DỤNG A. GIỚI THIỆU Định lí Lagrange được phát biểu như sau: Cho hàm số F(x) liên tục trên [a,b] và có đạo hàm trong khoảng (a,b) thì luôn tồn tại   sao cho: Chúng ta sẽ đi tìm hiểu 3 bài toán sử dụng định lí Lagrange trong chương trình THPT như sau:             I. Sử dụng định lí Lagrange chứng minh bất đẳng thức.             II. Sử dụng định lí Lagrange chứng minh phương trình có nghiệm.             III. Sử dụng định lí Lagrange giải phương trình. B. NỘI DUNG I. SỬ DỤNG ĐỊNH LÍ LAGRANGE CHỨNG MINH BẤT ĐẲNG THỨC. * Phương pháp             Từ định lí Lagrange , nếu thì:             Vậy             Từ định lí Lagrange để áp dụng được kết quả trên, điều quan trọng nhất là xác định được hàm số F(x).  *Ví dụ minh họa VD1: CMR nếu   th×: Giải Bất đẳng thức đã cho tương đương với: Xét hàm số: liên tục trên, và có đạo hàm trong khoảng . Theo định lí Lagrange luôn tồn tại   sao cho:    Ta có: (đpcm). NX: Điều quan trọng hơn cả trong bài toán này là chúng ta nhận ra được hàm số F(x) qua việc biến đổi tương đương BPT đã cho. Ta xét VD 2   VD 2: Cho . Chứng minh: Giải BĐT đã cho tương đương với: Đặt với Ta có:             AD định lí Lagrange đối với hàm số: trên , thì tồn tại sao cho: . Từ (1) suy ra: Suy ra:   (đpcm).  NX: Bài này khó hơn bài trên ở chỗ phải tinh ý lấy logaNepe hai vế mới nhận ra đựơc hàm số f (x).  VD 3: Cho a<b<c. CMR: Giải Xét hàm số: Theo định lí Lagrange tồn tại sao cho: Ta thấy: Từ (1) Do đó, từ . Suy ra: II. SỬ DỤNG ĐỊNH LÍ LAGRANGE CHỨNG MINH PHƯƠNG TRÌNH CÓ NGHIỆM. *Phương pháp:             Từ định lí Lagrange, nếu F(b)-F(a)=0 thì tồn tại sao cho:                         phương trình   có nghiệm thuộc             Để áp dụng được định lí Lagrange phải nhận ra hàm số F (x) (thực ra nó là nguyên hàm của hàm số f(x)).             Dạng bài toán này làm theo các bước sau:             Bước 1: Xác định hàm số F(x) liên tục trên [a,b] và có đạo hàm trên (a,b), thoả mãn:                         a. F'(x)=f(x).                         b. F(b)-F(a)=0.             Bước 2: Khi đó tồn tại sao cho:                         phương trình f(x)= 0 có nghiệm . *Ví dụ minh hoạ:         VD1: CMR phương trình:             có nghiệm với mọi a,b,c. Giải Xét hàm số: Dễ dàng nhận thấy: Khi đó tồn tại sao cho:             Vậy phương trình đã cho có nghiệm thuộc khoảng . VD 2: Giả sử: . CMR phương trình:                         có nghiệm thuộc khoảng (0, 1)      Giải Xét hàm số: liên tục trên [0,1] và có đạo hàm trong khoảng (0,1). Ta có: Khi đó tồn tại sao cho: Vậy phương trình đã cho có nghiệm thụôc khoảng (0,1).  Từ VD2 ta có thể giải được bài toán sau:  VD3: Giả sử: . CMR phương trình:             có nghiệm thuộc khoảng (0,1). Giải Xét hàm số: Nhận thấy, F(x) liên tục trên [0,1] và có đạo hàm trong khoảng (0,1). Ta có: Khi đó tồn tại sao cho: V ì n ên ta c ó: . V ậy ph ư ơng tr ình đ ã cho c ó nghi ệm thu ộc kho ảng (0,1).  III. SỬ DỤNG ĐỊNH LÍ LAGRANGE GI ẢI PH Ư ƠNG TR ÌNH. * Phương pháp:             Đ ể áp d ụng đ ịnh l í Lagrange vào việc giải phương trình ta thực hiện theo các bước sau đây:             Bước 1: Gọi l à nghi ệm c ủa ph ư ơng tr ình.             Bước 2: Biến đổi phương trình về dạng thích hợp , từ đó chỉ ra hàm số liên tục trên [a,b] và có đạo hàm trên khoảng (a,b).             Khi đó theo định lí Lagrange tồn tại sao cho:                                                                                 (*)             Bước 3: Giải (*), ta xác định được .             Bước 4: Thử lại * Ví dụ minh họa: VD 1: Giải phương trình: . Giải             Gọi là nghiệm của phương trình đã cho. Ta được:             (1)             Xét hàm số: . Khi đó:             (1)             Vì F(t) liên tục trên [3,4] và có đạo hàm trong khoảng (3,4), do đó theo định lí Lagrange tồn tại sao cho: Thử lại và thấy đúng. Vậy phương trình có hai nghiệm x=0 và x=1.  VD 2: Giải phương trình: Giải             Gọi là nghiệm của phương trình đã cho, ta có:             (2).             Xét hàm số: , khi đó:             Vì F(t) liên tục trên [2,3] và có đạo hàm trên (2,3), do đó theo định lí Lagrange luôn tồn tại sao cho: Thử lại thấy đúng. vậy phương trình có hai họ nghiệm và .         C. BÀI TẬP ÁP DỤNG    1. CMR nếu x>y> 0 thì    2. CMR phương trình:    3. Giải các phương trình sau:          1.          2.

Tài liệu đính kèm:

  • docOn thi DHDINH LI LAGRANGE VA UNG DUNG.doc
Tài liệu liên quan
  • docGiáo án Giải tích 12 cơ bản - Trường THPT Ngô Quyền

    Lượt xem Lượt xem: 1241 Lượt tải Lượt tải: 0

  • docGiáo án Giải tích 12 - GV: Ngô Kiều Lượng - Tiết 2: Sự đồng biến, nghịch biến của hàm số (tt)

    Lượt xem Lượt xem: 826 Lượt tải Lượt tải: 0

  • docGiáo án Giải tích 12 nâng cao tiết 51: Luyện tập

    Lượt xem Lượt xem: 926 Lượt tải Lượt tải: 0

  • docGiáo án Giải tích 12 - Tiết 13 đến Tiết 17

    Lượt xem Lượt xem: 816 Lượt tải Lượt tải: 0

  • pdfĐề thi thử đại học lần thứ nhất môn: Toán khối A, B, D

    Lượt xem Lượt xem: 976 Lượt tải Lượt tải: 0

  • docGiáo án Giải tích cơ bản 12 tiết 45: Đề kiểm tra 45’

    Lượt xem Lượt xem: 1141 Lượt tải Lượt tải: 0

  • docGiáo án Giải tích lớp 12 - Tiết 63 - Bài 3: Luyện tập ( 1 tiết)

    Lượt xem Lượt xem: 827 Lượt tải Lượt tải: 0

  • docGiáo án Giải tích 12 - GV: Trần Sĩ Tùng - Tiết 53: Tích phân (tt)

    Lượt xem Lượt xem: 1017 Lượt tải Lượt tải: 0

  • docChủ đề 8 nguyên hàm, tích phân và ứng dụng

    Lượt xem Lượt xem: 1391 Lượt tải Lượt tải: 0

  • pdfĐề 2 thi tuyển sinh đại học, cao đẳng năm 2002 môn thi: Toán, Khối A

    Lượt xem Lượt xem: 1194 Lượt tải Lượt tải: 0

Copyright © 2024 Lop12.net - Giáo án điện tử lớp 12, Sáng kiến kinh nghiệm hay, chia sẻ thủ thuật phần mềm

Facebook Twitter

Từ khóa » định Lý Lagrange Giải Tích