Có Bao Nhiêu Giá Trị Nguyên Của Tham Số M để Hàm Số Y=x^8+(m−2 ...

Skip to content

(THPTQG – 2018 – 101) Có bao nhiêu giá trị nguyên của tham số m để hàm số \( y={{x}^{8}}+\left( m-2 \right){{x}^{5}}-\left( {{m}^{2}}-4 \right){{x}^{4}}+1 \) đạt cực tiểu tại x = 0?

A. Vô nghiệm

B. 3

C. 5                                   

D. 4

Hướng dẫn giải:

Đáp án D.

Ta có: \({y}’=8{{x}^{7}}+5\left( m-2 \right){{x}^{4}}-4\left( {{m}^{2}}-4 \right){{x}^{3}}\)

\(\Rightarrow {y}’=0\Leftrightarrow {{x}^{3}}\left[ 8{{x}^{4}}+5\left( m-2 \right)-4\left( {{m}^{2}}-4 \right) \right]=0\)

\( \Leftrightarrow \left[ \begin{align}& x=0 \\ & g(x)=8{{x}^{4}}+5\left( m-2 \right)x-4\left( {{m}^{2}}-4 \right)=0 \\ \end{align} \right. \)

Xét hàm số  \( g(x)=8{{x}^{4}}+5\left( m-2 \right)x-4\left( {{m}^{2}}-4 \right)=0 \) có  \( {g}'(x)=32{{x}^{3}}+5\left( m-2 \right) \).

Ta thấy  \( {g}'(x)=0 \) có một nghiệm nên  \( g(x)=0 \) có tối đa hai nghiệm

+ Trường hợp 1: Nếu  \( g(x)=0 \) có nghiệm x = 0  \( \Rightarrow m=2 \) hoặc  \( m=-2 \).

– Với m = 2 thì x = 0 là nghiệm bội 4 của g(x).

Khi đó x = 0 là nghiệm bội 7 của y’ và y’ đổi dấu từ âm sang dương khi qua điểm x = 0 nên x = 0 là điểm cực tiểu của hàm số.

Vậy m = 2 thỏa yêu cầu bài toán.

– Với  \( m=-2 \) thì  \( g(x)=8{{x}^{4}}-20x=0\Leftrightarrow \left[ \begin{align} & x=0 \\  & x=\sqrt[3]{\frac{5}{2}} \\ \end{align} \right. \).

Bảng biến thiên:

 

Dựa vào bảng biến thiên x = 0 không là điểm cực tiểu của hàm số. Vậy  \( m=-2 \) không thỏa yêu cầu bài toán.

+ Trường hợp 2:  \( g(0)\ne 0\Leftrightarrow m\ne \pm 2 \).

Để hàm số đạt cực tiểu tại  \( x=0\Leftrightarrow g(0)>0 \)

 \( \Leftrightarrow {{m}^{2}}-4<0\Leftrightarrow -2<m<2 \)

Do  \( m\in \mathbb{Z} \) nên \(  m\in \left\{ -1;0;1 \right\} \).

Vậy cả hai trường hợp ta được 4 giá trị nguyên của m thỏa yêu cầu bài toán.

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

  • Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
  • Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
  • Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
  • Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
  • Thời lượng học 1,5h - 2h/1 buổi!
  • Học phí giá rẻ - bình dân!
  • Đóng 3 tháng tặng 1 tháng
094.625.1920 - Thầy Nhân (Zalo)

Các bài toán liên quan

Biết rằng f(0)=0. Hỏi hàm số g(x)=∣f(x6)−x3∣ có bao nhiêu điểm cực đại

Số điểm cực tiểu của hàm số g(x)=4f(x^2−4)+x^4−8x^2 là

Gọi m, n lần lượt là số điểm cực đại, số điểm cực tiểu của hàm số g(x)=|f(|x|)+3|x||. Giá trị của mn bằng

Cho hàm số bậc ba f(x) và hàm số g(x)=f(x+1) thỏa mãn (x−1)g′(x+3)=(x+1)g′(x+2),∀x∈R. Số điểm cực trị của hàm số y=f(2×2−4x+5) là

Số giá trị nguyên của tham số m để hàm số g(x)=f(2x^2−4|x|+m−3) có 7 điểm cực trị

Cho hàm số f(x) có đạo hàm liên tục trên R. Đồ thị của hàm số y=f(5−2x) như hình vẽ bên dưới

Cho hàm số f(x) xác định trên R, có đạo hàm f′(x)=(x2−4)(x−5),∀x∈R và f(1)=0. Có bao nhiêu giá trị nguyên của m để hàm số g(x)=∣f(x2+1)−m∣ có nhiều điểm cực trị nhất

Cho hàm số f(x)=x4−14×3+36×2+(16−m)x với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số g(x)=f(|x|) có 7 điểm cực trị

Cho hàm số bậc bốn y=f(x) có đồ thị (C1) và y=f′(x) có đồ thị (C2) như hình vẽ dưới

Cho hàm số y=f(x) có đồ thị như hình vẽ. Hàm số y=√4−f2(x) có bao nhiêu điểm cực trị

Các bài toán mới!

Tìm m để phương trình |f(x−1)+2|=m có 4 nghiệm thỏa mãn x1

Từ khóa » Hàm Số G(x)=3f(x)+1 đạt Cực Tiểu