Đề Cương ôn Tập Học Kì 1 Toán 8 | SGK Toán Lớp 8

LT đại số

I. PHÉP NHÂN – PHÉP CHIA ĐA THỨC

1. Phép nhân:

a)Nhân đơn thức với đa thức:

A.(B + C) = A.B + A.C

b)Nhân đa thức với đa thức:

(A + B)(C + D) = A.B + A.C +B.C + B.D

2. Các hằng đẳng thức đáng nhớ:

1) (A + B)2 = A2 + 2AB + B2

2) (A - B)2 = A2 - 2AB + B2

3) A2 – B2 = (A – B)(A + B)

4) (A + B)3 = A3 + 3A2B + 3AB2 + B3

5) (A - B)3 = A3 - 3A2B + 3AB2 - B3

6) A3 + B3 = (A + B)(A2 – AB + B2)

7) A3 - B3 = (A - B)(A2 + AB + B2)

* Mở rộng:

(A + B – C)2 = A2 + B2 + C2 + 2AB – 2AC – 2BC

3. Phân tích đa thức thành nhân tử:

a) Phân tích đa thức thành nhân tử là biến đổi đa thức đó thành tích của những đơn thức và đa thức.

b) Các phương pháp cơ bản :

- Phương pháp đặt nhân tử chung.

- Phương pháp dùng hằng đẳng thức.

- Phương pháp nhóm các hạng tử.

* Chú ý: Khi phân tích đa thức thành nhân tử ta thường phối hợp cả 3 phương pháp

4. Phép chia:

a) Chia đơn thức cho đơn thức:

- Đơn thức A chia hết cho đơn thức B khi mỗi bíến của B đều là biến của A với số mũ bé hơn hoặc bằng số mũ của nó trong A.

- Qui tắc: Muốn chia đơn thức A cho đơn thức B(trường hợp chia hết) :

+ Chia hệ số của A cho hệ số B.

+ Chia từng lũy thừa của biến trong A cho lũy thừa của biến đó trong B.

+ Nhân các kết quả với nhau.

b) Chia đa thức cho đơn thức:

- Điều kiện chia hết: Đa thức A chia hết cho đơn thức B khi mỗi hạng tử của A đều chia hết cho B.

- Qui tắc: Muốn chia đa thức A cho đơn thức B (trường hợp chia hết) ta chia mỗi hạng tử của A cho B , rồi cộng các kết quả với nhau :

(M + N) : B = M : B + N : B

c) Chia hai đa thức một biến đã sắp xếp :

- Với hai đa thức A và B (B ≠ 0), luôn tồn tại hai đa thức duy nhất Q và R sao cho :

A = B.Q + R ( trong đó R = 0), hoặc bậc của R bé hơn bậc của B khi R ≠ 0.

- Nếu R = 0 thì A chia chia hết cho B.

II. PHÂN THỨC ĐẠI SỐ

1. Định nghĩa: Phân thức đại số là biểu thức có dang \(\frac{{\rm{A}}}{{\rm{B}}}\)(A, B là những đa thức, B ≠ 0).

2. Phân thức bằng nhau:

\(\frac{A}{B} = \frac{C}{D}{\rm{ }}\)nếu  A.D = B.C

3. Tính chất cơ bản:

- Nếu đa thức M ≠ 0 thì  \(\frac{A}{B} = \frac{{A.M}}{{B.M}}\)

- Nếu đa thức N là nhân tử chung thì \(\frac{A}{B} = \frac{{A:N}}{{B:N}}\)

- Quy tắc đổi dấu : \(\frac{A}{B} = \frac{{ - A}}{{ - B}}\)

4. Rút gọn phân thức : Gồm các bước

+ Phân tích tử và mẫu thành nhân tử (nếu có thể) để tìm nhân tử chung.

+ Chia cả tử và mẫu cho nhân tử chung.

5. Quy đồng mẫu thức nhiều phân thức:

+ Phân tích các mẫu thành nhân tử rồi tìm MTC.

+ Tìm nhân tử phụ của mỗi mẫu thức.

+ Nhân tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

6. Cộng các phân thức đại số :

a) Cộng các PTĐS cùng mẫu: Ta cộng tử thức với nhau, giữ nguyên mẫu thức rồi rút gọn PTĐS vừa tìm được.

b) Cộng các PTĐS không cùng mẫu: Ta qui đồng mẫu thức, rồi cộng các PTĐS cùng mẫu tìm được.

c) Phép cộng các PTĐS có các tính chất :

+ Giao hoán : \(\frac{A}{B} + \frac{C}{D} = \frac{C}{D} + \frac{A}{B}\)

+ Kết hợp : \((\frac{A}{B} + \frac{C}{D}) + \frac{E}{F} = \frac{A}{B} + (\frac{C}{D} + \frac{E}{F})\)

7. Trừ các phân thức đại số :

a) Hai phân thức gọi là đối nhau nếu tổng của chúng bằng 0 (\(\frac{A}{B}{\rm{  \,\text{và}\,   - }}\frac{A}{B}\) là hai phân thức đối nhau)

b) Qui tắc đổi dấu : \( - \frac{A}{B} = \frac{{ - A}}{B} = \frac{A}{{ - B}}\)

c) Phép trừ : \(\frac{A}{B} - \frac{C}{D} = \frac{A}{B} + ( - \frac{C}{D})\)

8. Nhân các phân thức đại số :

a) Nhân các PTĐS ta nhân các tử thức với nhau, nhân các mẫu thức với nhau , rồi rút gọn PTĐS tìm được :

\(\frac{A}{B}.\frac{C}{D} = \frac{{A.C}}{{B.D}}\)

b) Phép nhân các PTĐS có tính chất :

+ Giao hoán : \(\frac{A}{B}.\frac{C}{D} = \frac{C}{D}.\frac{A}{B}\)

+ Kết hợp : \((\frac{A}{B}.\frac{C}{D}).\frac{E}{F} = \frac{A}{B}.(\frac{C}{D}.\frac{E}{F})\)

+ Phân phối đối với phép cộng :

\(\frac{A}{B}.(\frac{C}{D} + \frac{E}{F}) = \frac{A}{B}.\frac{C}{D} + \frac{A}{B}.\frac{E}{F}\)

9. Chia các phân thức đại số :

a) Hai phân thức được gọi là nghịch đảo lẫn nhau nếu tích của chúng bằng 1.

\(\frac{A}{B}{\rm{ \,\text{và}\,  }}\frac{B}{A}\) là hai phân thức nghịch đảo lẫn nhau (với \(\frac{A}{B} \ne 0\))

b) Chia hai phân thức :

\(\frac{A}{B}:\frac{C}{D} = \frac{A}{B}.\frac{D}{C} = \frac{{A.D}}{{B.C}}{\rm{  }}\) (Với \(\frac{C}{D} \ne 0\))

10. Biểu thức hữu tỉ :

- Biểu thức chỉ chứa phép toán cộng, trừ , nhân , chia và chứa biến ở mẫu gọi là biểu thức hữu tỉ

- Điều kiện xác định của biểu thức hữu tỉ chỉ được xác định với điều kiện giá trị của mẫu thức khác 0

- Giá trị một biểu thức phân chỉ được xác định khi giá trị của mẫu thức khác 0.

Từ khóa » Toán Tìm X Lớp 8 Học Kì 1