Diện Tích Hình Phẳng được Giới Hạn Bởi Parabol \(y = 2 - X\) Là:

YOMEDIA NONE Diện tích hình phẳng được giới hạn bởi parabol \(y = 2 - {x^2}\) và đường thẳng \(y = - x\) là: ADMICRO
  • Câu hỏi:

    Diện tích hình phẳng được giới hạn bởi parabol \(y = 2 - {x^2}\) và đường thẳng \(y = - x\) là:

    • A. \(\dfrac{9}{2}\).
    • B. 3
    • C. \(\dfrac{9}{4}\)
    • D. \(\dfrac{7}{2}\).

    Lời giải tham khảo:

    Đáp án đúng: A

    Phương trình hoành độ giao điểm \(2 - {x^2} = - x \)

    \(\Leftrightarrow {x^2} - x - 2 = 0\)

    \(\Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 1\end{array} \right.\)

    Diện tích hình phẳng được xác định bởi công thức

    \(S = \int\limits_{ - 1}^2 {\left( {\left( {2 - {x^2}} \right) + x} \right)\,dx} \)\(\, = \left( { - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + 2x} \right)\left| \begin{array}{l}^2\\_{ - 1}\end{array} \right.\)\(\, = \dfrac{{10}}{3} + \dfrac{7}{6} = \dfrac{9}{2}.\)

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 230141

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Lê Thị Hồng Gấm

    40 câu hỏi | 60 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Tìm .
  • Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường quanh Ox là:
  • Tìm \(I = \int {\cos \left( {4x + 3} \right)\,dx} \).
  • Đặt . Khi đó F’(x) là hàm số nào dưới đây ?
  • Hàm số nào dưới đây không là nguyên hàm của \(f(x) = \dfrac{{2x\left( {x + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\) ?
  • Tính nguyên hàm của  (int {{{left( {5x + 3} ight)}^3},dx} ) ta được:
  • Cho \(f(x) \ge g(x),\forall x \in [a;b]\). Hình phẳng S1 giới hạn bởi đường y = f(x), y = 0, x = a, x = b (a
  • Diện tích hình phẳng giới hạn bởi các đường : \(y = {x^2}\,,\,y = \dfrac{{{x^2}}}{8},\,\,y = \dfrac{{27}}{x}\) là:
  • Khoanh vào phương án đúng.
  • Tính tích phân \(\int\limits_a^{\dfrac{\pi }{2} - a} {{\sin }^2}x\,dx;\,\,\dfrac{\pi }{2} > a > 0 \)
  • Tích phân \(\int\limits_0^1 {x\sqrt {{x^2} + 1} } dx = \dfrac{{a\sqrt 2 - b}}{3}\) thì a + b bằng :
  • Trong các hàm số f(x) dưới đây, hàm số nào thỏa mãn đẳng thức \(\int {f(x).\sin x\,dx = - f(x).\cos x + \int {{\pi ^x}.\cos x\,dx} } \)?
  • Chọn câu đúng. Cho F(x) là một nguyên hàm của hàm số (f(x) = {e^x} + 2x) thỏa mãn (F(0) = dfrac{3}{2}). Tìm F(x) ?
  • Biết F(x) là nguyên hàm của hàm số \(f(x) = \dfrac{1}{{x - 1}}\,,\,\,F(2) = 1\). Tính F(3).
  • Hàm số \(F(x) = 3{x^2} - \dfrac{1}{{\sqrt x }} + \dfrac{1}{{{x^2}}} - 1\) có một nguyên hàm là:
  • Diện tích hình phẳng được giới hạn bởi parabol \(y = 2 - {x^2}\) và đường thẳng \(y = - x\) là:
  • Kết quả của tích phân \(\int\limits_{ - 1}^0 {\left( {x + 1 + \dfrac{2}{{x - 1}}} \right)\,dx} \) được viết dưới dạng a + bln2. Tính giá trị của a + b.
  • Tìm \(I = \int {\sin 5x.\cos x\,dx} \).
  • Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x} - {e^{ - x}}\), trục hoành, đường thẳng x= - 1 và đường thẳng x = 1.
  • Họ nguyên hàm của hàm số \(f(x) = x\left( {2 + 3{x^2}} \right)\) là:
  • Nguyên hàm của hàm số \(\int {\sin \left( {\dfrac{\pi }{3} - 2x} \right)\,dx} \) là:
  • Tính nguyên hàm \(\int {\dfrac{{dx}}{{\sqrt x + 1}}} \) ta được :
  • Gọi S là hình phẳng giới hạn bởi đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) và các trục tọa độ. Khi đó giá trị của S bằng :
  • Tất cả các giá trị của tham số m thỏa mãn \(\int\limits_0^m {\left( {2x + 5} \right)\,dx = 6} \).
  • Biết \(\int\limits_2^4 {\dfrac{1}{{2x + 1}}\,dx = m\ln 5 + n\ln 3\,\left( {m,n \in R} \right)} \). Tính P = m – n .
  • Công thức tính khoảng cách từ điểm \(A\) đến đường thẳng \(d'\) đi qua điểm \(M'\) và có VTCP \(\overrightarrow {u'} \) là:
  • Trong không gian \(Oxyz\) cho ba vectơ \(\overrightarrow a = \left( {3; - 2;4} \right),\)\(\mathop b\limits^ \to = \left( {5;1;6} \right)\), \(\mathop c\limits^ \to = \left( { - 3;0;2} \right)\). Tìm vectơ \(\overrightarrow x \) sao cho vectơ \(\overrightarrow x \) đồng thời vuông góc với \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)
  • Trong không gian\(Oxyz\), cho 2 điểm \(B(1;2; - 3)\),\(C(7;4; - 2)\). Nếu \(E\) là điểm thỏa mãn đẳng thức \(\overrightarrow {CE} = 2\overrightarrow {EB} \) thì tọa độ điểm \(E\) là
  • Trong không gian với hệ trục tọa độ \(Oxyz\), cho ba điểm \(A(1;2; - 1)\), \(B(2; - 1;3)\),\(C( - 2;3;3)\). Điểm\(M\left( {a;b;c} \right)\) là đỉnh thứ tư của hình bình hành \(ABCM\), khi đó \(P = {a^2} + {b^2} - {c^2}\) có giá trị bằng
  • Trong không gian với hệ trục tọa độ \(Oxyz\)cho ba điểm \(A(1;2; - 1)\), \(B(2; - 1;3)\),\(C( - 2;3;3)\). Tìm tọa độ điểm\(D\) là chân đường phân giác trong góc \(A\) của tam giác\(ABC\)
  • Trong không gian với hệ toạ độ \(Oxyz\), cho các điểm: A(-1,3,5), B(-4,3,2), C(0,2,1). Tìm tọa độ điểm \(I\) tâm đường tròn ngoại tiếp tam giác \(ABC\)
  • Trong không gian\(Oxyz\), cho ba vectơ \(\overrightarrow a = \left( { - 1,1,0} \right);\overrightarrow b = (1,1,0);\overrightarrow c = \left( {1,1,1} \right)\). Trong các mệnh đề sau, mệnh đề nào đúng:
  • Trong không gian với hệ tọa độ \(Oxyz\), cho tứ diện \(ABCD\), biết \(A(1;0;1)\),\(B( - 1;1;2)\), \(C( - 1;1;0)\), \(D(2; - 1; - 2)\). Độ dài đường cao \(AH\)của tứ diện \(ABCD\) bằng:
  • Chọn câu đúng. Cho hình chóp tam giác (S.ABC) với (I) là trọng tâm của đáy (ABC). Đẳng thức nào sau đây là đẳng thức đúng
  • Phương trình mặt cầu tâm \(I\left( {2;4;6} \right)\) nào sau đây tiếp xúc với trục Ox:
  • Mặt cầu tâm \(I\left( {2;4;6} \right)\) tiếp xúc với trục Oz có phương trình:
  • Cho mặt cầu \(\left( S \right)\): \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\). Phương trình mặt cầu nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):
  • Cho mặt cầu \(\left( S \right)\): \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 4\). Phương trình mặt cầu nào sau đây là phương trình mặt cầu đối xứng với mặt cầu (S) qua trục Oz:
  • Đường tròn giao tuyến của \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\) khi cắt bởi mặt phẳng (Oxy) có chu vi bằng:
  • Trong không gian với hệ toạ độ \(Oxyz\),tọa độ điểm \(M\) nằm trên trục \(Oy\) và cách đều hai mặt phẳng: \(\left( P \right):x + y - z + 1 = 0\) và \(\left( Q \right):x - y + z - 5 = 0\) là:
ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Giải tích 12 Chương 3

Đề thi giữa HK1 môn Toán 12

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn bài Người lái đò sông Đà

Đề thi giữa HK1 môn Ngữ Văn 12

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 7 Lớp 12 Economic Reforms

Tiếng Anh 12 mới Review 1

Đề thi giữa HK1 môn Tiếng Anh 12

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Vật lý 12 Chương 3

Đề thi giữa HK1 môn Vật Lý 12

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Hoá Học 12 Chương 4

Đề thi giữa HK1 môn Hóa 12

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 5

Đề thi giữa HK1 môn Sinh 12

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 2 Lịch Sử VN

Đề thi giữa HK1 môn Lịch Sử 12

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

Đề thi giữa HK1 môn Địa lý 12

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Đề thi giữa HK1 môn GDCD 12

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Đề thi giữa HK1 môn Công nghệ 12

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Đề thi giữa HK1 môn Tin học 12

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Toán

Quá trình văn học và phong cách văn học

Sóng- Xuân Quỳnh

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Đất Nước- Nguyễn Khoa Điềm

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Diện Tích Hình Phẳng Giới Hạn Bởi Parabol Y=2-x^2