Giải Tích 11 - Giới Hạn Của Dãy Số Và Hàm Số - Thư Viện Đề Thi

  • Trang Chủ
  • Đăng ký
  • Đăng nhập
  • Upload
  • Liên hệ

Thư Viện Đề Thi

Trang ChủToán HọcToán 11 Giải tích 11 - Giới hạn của dãy số và hàm số doc 12 trang Người đăng minhphuc19 Lượt xem 1556Lượt tải 5 Download Bạn đang xem tài liệu "Giải tích 11 - Giới hạn của dãy số và hàm số", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên Giải tích 11 - Giới hạn của dãy số và hàm số CHƯƠNG IV: GIỚI HẠN CHỦ ĐỀ: GIỚI HẠN CỦA DÃY SỐ KIẾN THỨC CƠ BẢN Định nghĩa: Định nghĩa 1: Ta nói rằng dãy số (un) có giới hạn là 0 khi n dần tới vô cực, nếu có thể nhỏ hơn một số dương bé tùy ý, kể từ số hạng nào đó trở đi. Kí hiệu: Định nghĩa 2:Ta nói dãy số (un) có giới hạn là a hay (un) dần tới a khi n dần tới vô cực (), nếu Kí hiệu: Chú ý: . Một vài giới hạn đặc biệt. với . Lim(un)=c (c là hằng số) => Lim(un)=limc=c. Một số định lý về giới hạn của dãy số. Định lý 1: Cho dãy số (un),(vn) và (wn) có : và . Định lý 2: Nếu lim(un)=a , lim(vn)=b thì: Tổng của cấp số nhân lùi vô hạn có công bội q ,với Dãy số dần tới vô cực: Ta nói dãy số (un) dần tới vô cực khi n dần tới vơ cực nếu un lớn hơn một số dương bất kỳ, kể từ số hạng nào đó trở đi. Kí hiệu: lim(un)= hay un khi . Ta nói dãy số (un) có giới hạn là khi nếu lim.Ký hiệu: lim(un)= hay un khi . Định lý: Nếu : thì Nếu : thì PHƯƠNG PHÁP GIẢI TOÁN. Giới hạn của dãy số (un) với với P,Q là các đa thức: Nếu bậc P = bậc Q = k, hệ số cao nhất của P là a0, hệ số cao nhất của Q là b0 thì chia tử số và mẫu số cho nk để đi đến kết quả : . Nếu bậc P nhỏ hơn bậc Q = k, thì chia tử và mẫu cho nk để đi đến kết quả :lim(un)=0. Nếu k = bậc P > bậc Q, chia tử và mẫu cho nk để đi đến kết quả :lim(un)=. Giới hạn của dãy số dạng: , f và g là các biển thức chứa căn. Chia tử và mẫu cho nk với k chọn thích hợp. Nhân tử và mẫu với biểu thức liên hợp. CÁC VÍ DỤ. là biểu thức liên hợp của Tổng của cấp số nhân lùi vô hạn có công bội và số hạng đầu u1=1. . BÀI TẬP Tìm các giới hạn: Tìm các giới hạn sau: Tìm các giới hạn sau: Tìm tổng các cấp số nhân lùi vô hạn sau: GIỚI HẠN CỦA HÀM SỐ KIẾN THỨC CƠ BẢN Định nghĩa:Cho hàm số f(x) xác định trên khoảng K.Ta nói rằng hàm số f(x) có giới hạn là L khi x dần tới a nếu với mọi dãy số (xn), xn K và xn a , mà lim(xn)=a đều có lim[f(xn)]=L.Kí hiệu:. Một số định lý về giới hạn của hàm số: Định lý 1:Nếu hàm số có giới hạn bằng L thì giới hạn đó là duy nhất. Định lý 2:Nếu các giới hạn: thì: Cho ba hàm số f(x), h(x) và g(x) xác định trên khoảng K chứa điểm a (có thể trừ điểm a), g(x)f(x)h(x) và . Mở rộng khái niệm giới hạn hàm số: Trong định nghĩa giới hạn hàm số , nếu với mọi dãy số (xn), lim(xn) = a , đều có lim[f(xn)]= thì ta nói f(x) dần tới vô cực khi x dần tới a, kí hiệu: . Nếu với mọi dãy số (xn) , lim(xn) = đều có lim[f(xn)] = L , thì ta nói f(x) có giới hạn là L khi x dần tới vô cực, kí hiệu:. Trong định nghĩa giới hạn hàm số chỉ đòi hỏi với mọi dãy số (xn), mà xn > a , thì ta nói f(x) có giới hạn về bên phải tại a, kí hiệu :. Nếu chỉ đòi hỏi với mọi dãy số (xn), xn < a thì ta nói hàm số có giới hạn bên trái tại a , kí hiệu: PHƯƠNG PHÁP GIẢI TOÁN Khi tìm giới hạn hàm số ta thường gặp các dạng sau: Giới hạn của hàm số dạng: Nếu f(x) , g(x) là các hàm đa thức thì có thể chia tử số , mẫu số cho (x-a) hoặc (x-a)2. Nếu f(x) , g(x) là các biểu thức chứa căn thì nhân tử và mẫu cho các biểu thức liên hợp. Giới hạn của hàm số dạng: Chia tử và mẫu cho xk với k chọn thích hợp. Chú ý rằng nếu thì coi như x>0, nếu thì coi như x<0 khi đưa x ra hoặc vào khỏi căn bậc chẵn. Giới hạn của hàm số dạng: . Ta biến đổi về dạng: Giới hạn của hàm số dạng: Đưa về dạng: CÁC VÍ DỤ .Chia tử và mẫu cho (x-2). (vì tử dần về 1 còn mẫu dần về 0).Cụ thể: . . Cho hàm số : . Tìm a để hàm số có giới hạn khi x dần tới 1 và tìm giới hạn đó. Giải Ta có : . Vậy . Dạng . . Dạng . . Dạng . BÀI TẬP. Tìm các giới hạn sau: Tìm các giới hạn : Tìm các giới hạn sau: . Tìm giới hạn bên phải, bên trái của hàm số f(x) tại x=x0 và xét xem có tồn tại không trong các trường hợp sau: tại x0 = 1 tại x0 = 1 tại x0 = 2 tại x0 = 1 Tìm các giới hạn: HÀM SỐ LIÊN TỤC KIẾN THỨC CẦN NHỚ Hàm số liên tục tại một điểm trên một khoảng: Cho hàm số f(x) xác định trên khoảng (a;b). Hàm số được gọi là liên tục tại điểm x0 (a;b) nếu:.Điểm x0 tại đó f(x) không liên tục gọi là điểm gián đoạn của hàm số. f(x) xác định trên khoảng (a;b) liên tục tại điểm x0 (a;b) . f(x) xác định trên khoảng (a;b) được gọi là liên tục trên khoảng (a;b) nếu nó liên tục tại mọi điểm thuộc khoảng ấy. f(x) xác định trên khoảng [a;b] được gọi là liên tục trên khoảng [a;b] nếu nó liên tục trên khoảng (a;b) và Một số định lý về hàm số liên tục: Định lý 1: f(x) và g(x) liên tục tại x0 thì: cũng liên tục tại x0 . Đinh lý 2: Các hàm đa thức, hàm hữu tỷ, hàm lượng giác liên tục trên tập xác định của chúng. Định lý 3: f(x) liên tục trên đoạn [a;b] thì nó đạt GTLN, GTNN và mọi giá trị trung giữa GTLN và GTNN trên đoạn đó. Hệ quả: Nếu f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì tồn tại ít nhất một điểm c(a;b) sao cho f(c) = 0 . Tức là có ít nhất một nghiệm thuộc khoảng (a;b). PHƯƠNG PHÁP GIẢI TOÁN. Xét tính liên tục của hàm số dạng: Tìm .Hàm số liên tục tại x0 . Xét tính liên tục của hàm số dạng: Tìm : . Hàm số liên tục tại x = x0 . Chứng minh phương trình f(x) = 0 có nghiệm trong khoảng (a;b). Chứng tỏ f(x) liên tục trên đoạn [a;b]. Chứng tỏ f(a).f(b)<0 Khi đó f(x) = 0 có ít nhất một nghiệm thuộc (a;b). Nếu chưa có (a;b) thì ta cần tính các giá trị f(x) để tìm a và b. Muốn chứng minh f(x)=0 có hai , ba nghiệm thì ta tìm hai , ba khoảng rời nhau và trên mỗi khoảng f(x)=0 đều có nghiệm. CÁC VÍ DỤ. Cho hàm số: a là hằng số. Xét tính liên tục của hàm số tại x0 = 1. Giải Hàm số xác định với mọi x thuộc R. Ta có f(1) = a. Nếu a=2 thì hàm số liên tục tại x0 = 1. Nếu a2 thì hàm số gián đoạn tại x0 = 1. Cho hàm số: . Xét tính liên tục của hàm số tại x0 = 0. Giải Hàm số xác định với mọi x thuộc R. Ta có f(0) = 0 . Vậy hàm số không liên tục tại x0 = 0. Cho hàm số: . Xét tính liên tục của hàm số trên toàn trục số. Giải x >1 ta có f(x) = ax +2 hàm số liên tục. x <1 ta có f(x) = x2+x-1 hàm số liên tục. Khi x = 1: Ta có f(1) = a+2 . Hàm số liên tục tại x0 = 1 nếu a = -1. Hàm số gián đoạn tại x0 = 1 nếu a -1. Vậy hàm số liên tục trên toàn trục số nếu a = -1.Hàm số liên tục trên nếu a -1. BÀI TẬP Xét xem các hàm số sau có liên tục tại mọi x không, nếu chúng không liên tục thì chỉ ra các điểm gián đoạn. f(x) = x3 – 2x2 + 3x + 1 Cho hàm số: a là hằng số . Tìm a để f(x) liên tục tại mọi x, khi đó hãy vẽ đồ thị của hàm số. Chứng minh rằng phương trình: 3x2+2x-2=0 có ít nhất một nghiệm 4x4+2x2-x-3=0 có ít nhất hai nghiệm phân biệt thuộc (-1;1). x3-3x+1=0 có ba nghiệm phân biệt. x4-x-3=0 có một nghiệm thuộc (1;2). 2x3-6x+1=0 có ba nghiệm thuộc đoạn [-2;2]. Xác định a để các hàm số sau liên tục trên R: Xét tính liên tục tại x0 của các hàm số f(x) trong các trường hợp sau: tại x0 = 2 tại x0 = 1. tại ại x0 = 0 và tại x0 = 3.

Tài liệu đính kèm:

  • docgioi_han.doc
Đề thi liên quan
  • pdfRèn luyện kĩ năng giải các bài toán hình học phẳng

    Lượt xem Lượt xem: 3601 Lượt tải Lượt tải: 1

  • pdfỨng dụng của máy tính cầm tay (từ cơ bản đến nâng cao) trong giải toán

    Lượt xem Lượt xem: 2989 Lượt tải Lượt tải: 0

  • docKiểm tra học kì I môn Toán học 11

    Lượt xem Lượt xem: 707 Lượt tải Lượt tải: 0

  • docKiểm tra Đại số giải tích 11 - Chương 4

    Lượt xem Lượt xem: 620 Lượt tải Lượt tải: 0

  • pdfKiểm tra Tổng hợp – Toán 11 Bài số 35

    Lượt xem Lượt xem: 700 Lượt tải Lượt tải: 0

  • docBài tập Phép đếm, nhị thức Niu-Tơn

    Lượt xem Lượt xem: 1213 Lượt tải Lượt tải: 2

  • pdfKiểm tra Tổng hợp – Toán 11 Bài số 33

    Lượt xem Lượt xem: 741 Lượt tải Lượt tải: 0

  • docĐề kiểm tra một tiết lớp 11 môn Toán

    Lượt xem Lượt xem: 759 Lượt tải Lượt tải: 0

  • doc4 Đề kiểm tra 15 phút - Môn: Đại Số - Giải Tích 11 (Chương Giới hạn)

    Lượt xem Lượt xem: 1630 Lượt tải Lượt tải: 2

  • docBộ câu hỏi trắc nghiệm Toán lớp 11 - Quan hệ vuông góc - Năm học 2016-2017 - Trường THPT Mỹ Đức A

    Lượt xem Lượt xem: 823 Lượt tải Lượt tải: 3

Copyright © 2024 ThuVienDeThi.com, Thư viện đề thi mới nhất, Đề kiểm tra, Đề thi thử

Facebook Twitter

Từ khóa » Giới Hạn Hàm Số Giải Tích 1