Hai Biến Cố đối Lập Thì Xung Khắc Với Nhau
Có thể bạn quan tâm
2.1. Biến cố chắc chắn:
Là biến cố chắc chắn xảy ra trong một phép thử, và người ta kí hiệu là: W
Ví dụ 2: Tung một con xúc xắc. Gọi A là biến cố xúc xắc xuất hiện mặt có số chấm nhỏ hơn hoặc bằng 6. Khi đó ta nói A là biến cố chắc chắn, A = W.
2.2. Biến cố không thể:
Là biến cố không thể xảy ra trong một phép thử, và người ta kí hiệu là: Ø
Ví dụ 3: Tung một con xúc xắc. Gọi B là biến cố xúc xắc xuất hiện mặt 7 chấm. Khi đó ta nói A là biến cố không thể, A = Ø
2.3. Biến cố ngẫu nhiên:
Là biến cố có thể xảy ra cũng không thể xảy ra trong một phép thử. Ta thường dùng các chữ cái A, B, C,.. để kí hiệu cho biến cố ngẫu nhiên.
Ví dụ 4: Một xạ thủ bắn vào một tấm bia, gọi A là biến cố xạ thủ bắn trúng bia, A là biến cố ngẫu nhiên.
2.4. Biến cố thuận lợi (Biến cố kéo theo)
Biến cố A được gọi là thuận lợi cho biến cố B nếu A xảy ra thì B cũng xảy ra. Kí hiệu: AB.
Ví dụ 5: Tung một con xúc xắc. Gọi A là biến cố xúc xắc xuất hiện mặt 2 chấm và B là biến cố xuất hiện mặt chẵn. Khi đó ta nói A B.
Đặc biệt: Nếu A B và B A thì A và B là hai biến cố tương đương.
Kí hiệu A = B.
Ví dụ 6: Mỗi số chấm trên mặt xúc xắc tương ứng 5 điểm. Gọi A là biến cố xúc xắc xuất hiện mặt 6 chấm, B là biến cố được 30 điểm. Khi đó A = B.
2.5. Biến cố sơ cấp:
Biến cố A được gọi là biến cố sơ cấp nếu nó không có biến cố cố nào thuận lợi cho nó (trừ chính nó), tức là không thể phân tích được nữa.
Ví dụ 7: Gọi Ai là biến cố xúc xắc xuất hiện mặt i chấm (i=1,..,6) thì A1, A2, .. , A6 là các biến cố sơ cấp.
Gọi B là biến cố thu được mặt có số chấm chẵn.
B = A2 + A4 + A6 thì B không phải là biến cố sơ cấp.
Tập hợp tất cả các biến cố sơ cấp của một phép thử được gọi là không gian các biến cố sơ cấp và kí hiệu: W
Ví dụ 8: W = { A1, A2, A3, A4, A5, A6}.
2.6. Biến cố hiệu:
Hiệu của hai biến cố A và B, kí hiệu A-B (hay A\B) là một biến cố xảy ra khi và chỉ khi A xảy ra nhưng B không xảy ra.
Ví dụ 9: Tung một con xúc xắc.
Gọi A là biến cố xúc xắc xuất hiện mặt có số chấm là số lẻ.
B là biến cố xúc xắc xuất hiện mặt có số chấm là số nguyên tố nhỏ hơn 5.
C là biến cố xúc xắc xuất hiện mặt có 5 chấm.
Ta có: C = A\B
2.7. Biến cố tổng:
Tổng của hai biến cố A và B, kí hiệu A + B hay AB là một biến cố xảy ra khi và chỉ khi ít nhất một trong hai biến cố A và B xảy ra.
Ví dụ 10: Hai xạ thủ cùng bắn vào một con thú. Gọi A là biến cố xạ thủ thứ nhất bắn trúng, B là biến cố xạ thủ thứ hai bắn trúng. Khi đó biến cố thú bị trúng đạn là C = A + B.
Ví dụ 11: Có 2 xạ thủ, mỗi người bắn 1 viên đến 1 mục tiêu.
Gọi Ai là biến cố xạ thủ thứ i bắn trúng mục tiêu (i = 1, 2).
Gọi là biến cố xạ thủ thứ i không bắn trúng mục tiêu (i =1, 2).
Gọi Bi là biến cố mục tiêu bị bắn trúng i viên đạn.
Ta có:
Tổng quát: Tổng của n biến cố A1, A2, .., An là một biến cố xảy ra khi và chỉ khi ít nhất một trong các biến cố Ai xảy ra (i = 1,..,n).
Kí hiệu: A1+ A2+ .. + An hay A1 A2 .. An
Chú ý: Biến cố chắc chắn W là tổng của mọi biến cố sơ cấp có thể, nghĩa là mọi biến cố sơ cấp đều thuận lợi cho W. Do đó, W còn được gọi là không gian các biến cố sơ cấp.
2.8. Biến cố tích:
Tích của hai biến cố A và B, kí hiệu: AB hay AB là một biến cố xảy ra khi và chỉ khi cả hai biến cố A và B đồng thời xảy ra.
Ví dụ 12: Hai xạ thủ cùng bắn vào một con thú. Gọi A là biến cố xạ thủ thứ nhất bắn trật, B là biến cố xạ thủ thứ hai bắn trật. Khi đó biến cố thú bị không bị trúng đạn là C = AB.
Tổng quát: Tích của n biến cố A1, A2, .., An là một biến cố xảy ra khi và chỉ khi tất cả các biến cố Ai đều xảy ra. Kí hiệu: A1 A2 … An hay A1A2 .. An
2.9. Biến cố xung khắc:
Hai biến cố A và B được gọi là xung khắc nếu chúng không đồng thời xảy ra trong một phép thử.
Ví dụ 13: Tung một con xúc xắc, gọi A là biến cố xúc xắc xuất hiện mặt chẵn, B là biến cố xúc xắc xuất hiện mặt 3 chấm Þ A, B xung khắc.
2.10. Biến cố đối lập:
Biến cố không xảy ra biến cố A được gọi là biến cố đối lập của A. Kí hiệu:
A và đối lập khi và chỉ khi A= Ø và A phải là biến cố chắc chắn, tức là trong phép thử có một và chỉ được một A hoặc xảy ra.
Chú ý: Hai biến cố đối lập thì xung khắc nhưng ngược lại 2 biến cố xung khắc thì chưa chắc đối lập.
2.11. Biến cố đồng khả năng:
Các biến cố A, B, C,.. được gọi là đồng khả năng nếu chúng có cùng một khả năng xuất hiện như nhau trong một phép thử.
Ví dụ 14: Tung một đồng xu, gọi S là biến cố đồng xu xuất hiện mặt xấp, N là biến cố xuất hiện mặt ngữa thì S và N là hai biến cố đồng khả năng.
Tóm lại, qua các khái niệm trên, ta thấy các biến cố tổng, hiệu, tích, đối lập tương ứng với tập hợp, giao, hiệu, phần bù của lý thuyết tập hợp. Do đó có thể sử dụng các phép toán trên các tập hợp cho các phép toán trên các biến cố.
Tài liệu Biến cố đối là gì? Bài tập về biến cố đối cực hay, chi tiết Toán lớp 11 sẽ tóm tắt kiến thức trọng tâm về Biến cố đối là gì? Bài tập về biến cố đối từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 11.
1. Định nghĩa
- Cho A là một biến cố. Khi đó biến cố “Không xảy ra A”, kí hiệu là , được gọi là biến cố đối của A.
- Biến cố đối của A: = Ω\A
- Chú ý: Hai biến cố đối nhau thì xung khắc, nhưng hai biến cố xung khắc thì chưa chắc đã đối nhau.
Ví dụ: Chọn ngẫu nhiên một học sinh trong trường
A là biến cố: “Bạn đó là học sinh khối 10”
B là biến cố: “Bạn đó là học sinh khối 11”
Khi đó A và B là hai biến cố xung khắc, nhưng A và B không phải là hai biến cố đối nhau.
2. Định lý
Cho biến cố A. Xác suất của biến cố đối là
P() = 1 – P(A) (1)
Từ công thức (1), suy ra P(A) = 1 – P().
3. Ví dụ minh họa
Ví dụ 1. Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A: “Ít nhất một lần xuất hiện mặt sấp”.
Hướng dẫn
Gọi biến cố đối của biến cố A là
Khi đó : “Không lần nào xuất hiện mặt xấp”, có nghĩa là “Cả" ba lần gieo chỉ xuất hiện mặt ngửa”.
Ví dụ 2. Trong một túi có 5 viên bi xanh và 6 viên bi đỏ, lấy ngẫu nhiên từ đó ra 2 viên bi. Khi đó xác suất để lấy được ít nhất một viên bi xanh là?
Hướng dẫn:
Số phần tử của không gian mẫu: |Ω| = C112 = 55.
Gọi A là biến cố: “Lấy được ít nhất một bi xanh”.
Khi đó, biến cố đối của A, : “Không lấy được viên bi xanh nào”, tức là 2 viên bi lấy ra đều màu đỏ.
Số phần tử của biến cố là: ||=C_6^2=15
2.1 – Phép thử và biến cố:
Việc thực hiện một nhóm các điều kiện cơ bản để quan sát một hiện tượng nào đó được gọi là một phép thử còn hiện tượng có thể xảy ra trong kết quả của phép thử được gọi là biến cố.
Thí dụ:
1. Tung một con xúc xắc là một phép thử, còn việc lật lên mặt nào đó là biến cố.
2. Bắn một phát súng vào bia thì việc bắn súng là phép thử còn viên đạn trúng bia (hay trật bia) là biến cố.
3. Từ một lô sản phẩm gồm chính phẩm và phế phẩm. Lấy ngẫu nhiên một sản phẩm, việc lấy sản phẩm là một phép thử. Còn lấy được chính phẩm (hay phế phẩm) là biến cố.
Như vậy ta thấy rằng một biến cố chỉ có thể xảy ra khi một phép thử gắn liền với nó được thực hiện.
2.2 – Các loại biến cố:
Trong thực tế ta có thể gặp các loại biến cố sau đây:
a) Biến cố chắc chắn: là biến cố nhất định sẽ xảy ra khi thực hiện phép thử. Biến cố chắc chắn được ký hiệu là U.
Thí dụ:
1. Khi thực hiện phép thử: tung một con xúc xắc, gọi U là biến cố “xúc xắc xuất hiện mặt có số chấm nhỏ hơn hoặc bằng sáu” thì U là biến cố chắc chắn.
2. Gọi U là biến cố “ nước sôi ở nhiệt độ , dưới áp suất 1 atm” thì U là một biến cố chắc chắn.
b) Biến cố không thể có: là biến cố không thể xảy ra khi thực hiện phép thử. Biến cố không thể có được ký hiệu là V.
Thí dụ:
1. Khi tung một con xúc xắc. Gọi V là biến cố “ xuất hiện mặt 7 chấm” V là biến cố không thể có.
2. Biến cố nước sôi ở nhiệt độ , với 1 atm là biến cố không thể có.
c) Biến cố ngẫu nhiên: là biến cố có thể xảy ra hoặc không xảy ra khi thực hiện phép thử. Các biến cố ngẫu nhiên thường được ký hiệu là A, B, C hoặc là
Thí dụ:
Khi tung một đồng xu, gọi A là biến cố “xuất hiện mặt chữ” thì A là biến cố ngẫu nhiên.
Tất cả các biến cố ta gặp trong thực tế đều thuộc một trong ba loại biến cố trên. Tuy nhiên biến cố ngẫu nhiên là loại biến cố thường gặp hơn cả.
2.3 – Mối quan hệ giữa các biến cố:
Định nghĩa 1: (Hai biến cố tương đương)
Biến cố A và B được gọi là hai biến cố tương đương (ký hiệu là A = B). Nếu A xảy ra thì B cũng xảy ra và ngược lại.
Thí dụ:
Khi tung một con xúc xắc, gọi A là biến cố “xuất hiện mặt 6 chấm“, B là biến cố “xuất hiện mặt chẵn lớn hơn 4“. Ta thấy nếu A xảy ra thì B cũng xảy ra và ngược lại nếu B xảy ra thì A cũng xảy ra. Vậy A = B.
Định nghĩa 2:
Biến cố C được gọi là tổng của hai biến cố A và B (ký hiệu C = A + B). Nếu C xảy khi và chỉ khi có ít nhất một trong hai biến cố A, B xảy ra.
Thí dụ:
Chọn ngẫu nhiên từ 2 lớp Lý A, B mỗi lớp 1 sinh viên. Gọi A là biến cố “bạn chọn từ lớp A là nam” , B là biến cố “ bạn chọn từ lớp B là nam” và C là biến cố “ chọn được sinh viên nam”. Rõ ràng biến cố C xảy ra khi có ít nhất một trong hai biến cố A và B xảy ra. Vậy C = A + B.
Định nghĩa 3:
Biến cố A được gọi là tổng của n biến cố: . A xảy ra khi và chỉ khi có ít nhất một trong n biến cố đó xảy ra. Ký hiệu là:
Định nghĩa 4:
Biến cố C được gọi là tích của hai biến cố A và B nếu: “C xảy ra khi và chỉ khi cả A và B cùng đồng thời xảy ra“. Ký hiệu là: C = A.B.
Thí dụ:
Hai lớp A, B đều có sinh viên sống tại Đà Lạt. Chọn ngẫu nhiên mỗi lớp 1 sinh viên. Gọi A là biến cố “chọn được sinh viên sống ở Đà Lạt ở lớp A”, B là biến cố “chọn được sinh viên sống ở Đà Lạt ở lớp A”, C là biến cố “cả hai sinh viên sống ở Đà Lạt”. Rõ ràng C xảy ra khi và chỉ khi cả A và B cùng xảy ra. Vậy C = A.B
Định nghĩa 5:
Biến cố A được gọi là tích của n biến cố: nếu A xảy ra khi và chỉ khi tất cả n biến cố ấy đồng thời xảy ra.
Ký hiệu là:
Thí dụ:
Xét phép thử lấy ngẫu nhiên lần lượt ra 4 con hạc giấy từ hộp có 10 con hạc (trong đó có 4 con hạc màu trắng). Gọi là biến cố “lần thứ i lấy được lấy được hạc trắng” (). A là biến cố lấy được 4 hạc trắng. Ta thấy A xảy ra khi và chỉ khi cả 4 biến cố đồng thời xảy ra. Vậy:
Định nghĩa 6:
Hai biến cố A và B được gọi là xung khắc nhau nếu chúng không đồng thời xảy ra trong một phép thử.
Thí dụ:
Xét phép chọn ngẫu nhiên 1 sinh viên trong lớp. Gọi A là biến cố “sinh viên được chọn là nam ” và B là biến cố “sinh viên được chọn là nữ” thì A và B là hai biến cố xung khắc.
Định nghĩa 7:
Nhóm n biến cố được gọi là xung khắc từng đôi nếu hai biến cố bất kỳ trong n biến cố này xung khắc với nhau
Thí dụ:
Tung một con xúc xắc. Gọi () là biến cố: “xúc xắc xuất hiện mặt i chấm“. Nhóm 6 biến cố là xung khắc từng đôi.
Định nghĩa 8:
Các biến cố được gọi là nhóm biến cố đầy đủ nếu chúng xung khắc từng đôi và tổng của chúng là biến cố chắc chắn.
Thí dụ:
Xét phép thử tung một con xúc xắc. Gọi Gọi () là biến cố “xuất hiện mặt i chấm” . Các biến cố tạo nên một nhóm các biến cố đầy đủ vì chúng xung khắc từng đôi một và tổng của 6 biến cố đó là biến cố chắc chắn: U = (biến cố U chắc chắn xảy ra trong một phép thử).
Định nghĩa 9:
Biến cố A và B gọi là hai biến cố đối lập nhau nếu chúng tạo nên một nhóm biến cố đầy đủ.
Thí dụ:
Khi tung một con xúc xắc. Gọi A là biến cố “xuất hiện mặt chẵn“,” B là biến cố “xuất hiện mặt lẻ“. Rõ ràng A và B là hai biến cố đối lập nhau.
Từ khóa » Cặp Biến Cố Xung Khắc Là Gì
-
Biến Cố Và Quan Hệ Giữa Các Biến Cố | Maths 4 Physics & More...
-
Biến Cố Xung Khắc Là Gì? Bài Tập Biến Cố Xung Khắc Cực Hay, Chi Tiết
-
Biến Cố Xung Khắc Là Gì?Tổ Hợp,xác Suất,quy Tắc đếm
-
Hai Biến Cố Xung Khắc Là Gì - Cẩm Nang Hải Phòng
-
Biến Cố Và Mối Quan Hệ Giữa Các Biến Cố
-
Xung Khắc Là Gì Toán 11 - Thả Rông
-
Biến Cố Không Xung Khắc Là Gì - Thả Rông
-
Biến Cố Xung Khắc Là Gì - Bài 2
-
Quan Hệ Giữa Các Biến Cố A Biến Cố Xung Khắc - Tài Liệu Text - 123doc
-
Bài 2: Mối Quan Hệ Giữa Các Biến Cố
-
[CHUẨN NHẤT] Thế Nào Là Hai Biến Cố độc Lập - Top Lời Giải
-
Biến Cố Ngẫu Nhiên Và Xác Suất (P2) - Viblo
-
[PDF] Bài 1: BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT