Hệ Thống Kiến Thức Hình Oxyz
Có thể bạn quan tâm
Nâng cấp gói Pro để trải nghiệm website VnDoc.com KHÔNG quảng cáo, và tải file cực nhanh không chờ đợi.
Tìm hiểu thêm » Mua ngay Từ 79.000đ Hỗ trợ ZaloHệ thống kiến thức hình Oxyz
Hệ thống kiến thức hình Oxyz được VnDoc.com sưu tầm và đăng tải xin gửi tới bạn đọc cùng tham khảo. Mời các bạn cùng theo dõi bài viết dưới đây nhé.
HOT: Đáp án Toán THPT Quốc gia 2023
1. Tọa độ điểm và véctơ
Hệ toa độ trong không gian gồm ba trục
\(Ox,Oy,Oz\) đôi một vuông góc, các véc tơ đơn vị tương ứng trên ba trục lần lượt là:
\(\overrightarrow{i} = (1;0;0),\overrightarrow{j} = (0;1;0),\overrightarrow{k} = (0;0;1)\)
\(\overrightarrow{u}(x;y;z) \Leftrightarrow \overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}\).
\(\overrightarrow{u} = (x;y;z) \Rightarrow |\overrightarrow{u}| = \sqrt{x^{2} + y^{2} + z^{2}}\)
\(\overrightarrow{AB} = \left( x_{B} - x_{A};y_{B} - y_{A};z_{B} - z_{A} \right)\)
\(AB = BA = |\overrightarrow{AB}| = \sqrt{\left( x_{B} - x_{A} \right)^{2} + \left( y_{B} - y_{A} \right)^{2} + \left( z_{B} - z_{A} \right)^{2}}\).
Nếu I là trung điểm của AB thì
\(I\left( \frac{x_{A} + x_{B}}{2};\frac{y_{A} + y_{B}}{2};\frac{z_{A} + z_{B}}{2} \right)\)
Nếu G là trọng tâm của
\(\bigtriangleup ABC\) thì
\(G\left( \frac{x_{A} + x_{B} + x_{C}}{3};\frac{y_{A} + y_{B} + y_{C}}{3};\frac{z_{A} + z_{B} + z_{C}}{3} \right)\)
ABCD là hình bình hành
\(\Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC}\).
2. Tích vô hướng hai vectơ và ứng dụng
a) Tích vô hướng: Cho
\(\overrightarrow{u}\left( x_{1};y_{1};z_{1} \right)\&\overrightarrow{v}\left( x_{2};y_{2};z_{2} \right)\). Ta có:
\(\overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{u}| \cdot |\overrightarrow{v}| \cdot cos(\overrightarrow{u},\overrightarrow{v})\)
\(\overrightarrow{u} \cdot \overrightarrow{V} = x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}\).
\(\overrightarrow{u}\bot\overrightarrow{v} \Leftrightarrow \overrightarrow{u} \cdot \overrightarrow{v} = 0 \Leftrightarrow x_{1} \cdot x_{2} + y_{1} \cdot y_{2} + z_{1} \cdot z_{2} = 0\)
b) Tích hữu hướng: Cho hai vectơ
\(\overrightarrow{u}\left( x_{1};y_{1};z_{1} \right)\) và
\(\overrightarrow{v}\left( x_{2};y_{2};z_{2} \right)\). Ta có:
\(|\lbrack\overrightarrow{u},\overrightarrow{V}\rbrack| = |\overrightarrow{u}| \cdot |\overrightarrow{V}| \cdot \sin(\overrightarrow{u},\overrightarrow{V})\).
\(\lbrack\overrightarrow{u},\overrightarrow{V}\rbrack = \left( \left| \begin{matrix} y_{1} & z_{1} \\ y_{2} & z_{2} \\ \end{matrix} \right|;\left| \begin{matrix} z_{1} & x_{1} \\ z_{2} & x_{2} \\ \end{matrix} \right|;\left| \begin{matrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \end{matrix} \right| \right)\).
\(\overrightarrow{u}\&\overrightarrow{V}\) cùng phương
\(\Leftrightarrow \lbrack\overrightarrow{u},\overrightarrow{V}\rbrack = \overrightarrow{0} \Leftrightarrow \frac{x_{2}}{x_{1}} = \frac{y_{2}}{y_{1}} = \frac{z_{2}}{z_{1}}\)
Diện tích tam giác:
\(S_{ABC} = \frac{1}{2}|\lbrack\overrightarrow{AB},\overrightarrow{AC}\rbrack|\)
Diện tích hình bình hành:
\(S_{ABCD} = \{\lbrack\overrightarrow{AB},\overrightarrow{AD}\rbrack\)
c) Tích hỗn hợp (hỗn tạp):
\(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\) đồng phẳng
\(\Leftrightarrow \lbrack\overrightarrow{u},\overrightarrow{V}\rbrack \cdot \overrightarrow{W} = 0\)
A, B, C, D là bốn đỉnh của tứ diện
\(\Leftrightarrow \overrightarrow {AB} ;\overrightarrow {AC} ;\overrightarrow {AD}\) không đồng phẳng.
Thể tích khối hộp
\(M'_0\) và có VTCP
\(\overrightarrow u '\) ta có:
(d) và (d') đồng phẳng khi và chỉ khi
\(\left[ {\overrightarrow u ;\overrightarrow {u'} } \right].\overrightarrow {{M_0}{M_0}'} = 0\)
(d) và (d') chéo nhau khi và chỉ khi
\(\left[ {\overrightarrow u ;\overrightarrow {u'} } \right].\overrightarrow {{M_0}{M_0}'} \ne 0\)
(d) và (d') cắt nhau khi và chỉ khi
Từ khóa » Các Công Thức Vecto Trong Không Gian Lớp 12
-
Phương Pháp Tọa độ Trong Không Gian - Lý Thuyết
-
Lý Thuyết Hệ Tọa độ Trong Không Gian Hay, Chi Tiết Nhất - Toán Lớp 12
-
Hình Học 12 Bài 1: Hệ Tọa độ Trong Không Gian - Hoc247
-
Công Thức Toạ độ Trong Không Gian
-
Các Phép Toán Vector Trong Tọa độ Không Gian - Chủ Đề Toán 12
-
Tọa độ, Vectơ Trong Không Gian Là Gì? Lý Thuyết Oxyz - Luyện Tập 247
-
Lý Thuyết Bài 1: Hệ Tọa Độ Trong Không Gian - Hình Học 12
-
Lý Thuyết Véc Tơ Trong Không Gian | SGK Toán Lớp 11
-
Công Thức Tính độ Dài Vectơ, Tính Khoảng Cách Giữa 2 điểm Và Công ...
-
Công Thức Tính Tích Có Hướng Của Hai Vecto Trong Không Gian Cực Hay
-
Các Dạng Bài Tập Hệ Tọa độ Trong Không Gian Chọn Lọc, Có đáp án
-
Lý Thuyết Hệ Toạ độ Trong Không Gian Hay đầy đủ Nhất - HocThatGioi