Lý Thuyết Phương Trình Chứa Dấu Giá Trị Tuyệt đối | SGK Toán Lớp 8
Có thể bạn quan tâm
1. Các kiến thức cần nhớ
Nhắc lại:
\(\left| a \right| = \left\{ \begin{array}{l}a\;\;khi\;\;a \ge 0\\ - a\;\;khi\;\;a < 0\end{array} \right..\)
Giải một số phương trình chứa dấu giá trị tuyệt đối
Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối
Bước 2: Giải các phương trình không có dấu giá trị tuyệt đối
Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét
Bước 4: Kết luận nghiệm.
2. Một số dạng toán chứa dấu giá trị tuyệt đối
a. Để giải phương trình chứa dấu giá trị tuyệt đối (GTTĐ) dạng \(\left| {A\left( x \right)} \right| = B\left( x \right)\), ta khử dấu GTTĐ bằng cách xét 2 trường hợp :
- Trường hợp 1: \(\left\{ \begin{array}{l}A\left( x \right) \ge 0\\A\left( x \right) = B\left( x \right)\end{array} \right.\)
- Trường hợp 1: \(\left\{ \begin{array}{l}A\left( x \right) < 0\\ - A\left( x \right) = B\left( x \right)\end{array} \right.\)
b. Với phương trình dạng \(\left| {A\left( x \right)} \right| = m\) với \(m > 0\), ta có:
\(\left| {A\left( x \right)} \right| = m \Leftrightarrow A\left( x \right) = m\) hoặc \(A\left( x \right) = - m\).
c. Với phương trình dạng \(\left| {A\left( x \right)} \right| = \left| {B\left( x \right)} \right|\) ta có:
\(\left| {A\left( x \right)} \right| = \left| {B\left( x \right)} \right| \)\(\Leftrightarrow A\left( x \right) = B\left( x \right)\) hoặc \(A\left( x \right) = - B\left( x \right)\)
d. Với phương trình chứa nhiều dấu giá trị tuyệt đối ta thực hiện theo các bước sau
Bước 1: Lập bảng xét dấu
Bước 2: Dựa vào bảng xét dấu để chia các trường hợp phá dấu giá trị tuyệt đối.
Bước 3: Giải phương trình thu được, so sánh với điều kiện và kết luận nghiệm.
Ví dụ: \(\left| {2x - 4} \right| = x\)
+ TH1: \(\left| {2x - 4} \right| = 2x - 4\) khi \(2x - 4 \ge 0 \Leftrightarrow 2x \ge 4 \Leftrightarrow x \ge 2\)
Khi đó ta có phương trình: \(2x - 4 = x \Leftrightarrow x = 4\,\left( {TM} \right)\)
+ TH2: \(\left| {2x - 4} \right| = - \left( {2x - 4} \right)\) khi \(2x - 4 < 0 \Leftrightarrow 2x < 4 \Leftrightarrow x < 2\)
Khi đó ta có phương trình \( - \left( {2x - 4} \right) = x \)\(\Leftrightarrow - 2x + 4 - x = 0 \)\(\Leftrightarrow 3x = 4\)\( \Leftrightarrow x = \dfrac{4}{3}\left( {TM} \right)\).
Vậy tập nghiệm của phương trình \(S = \left\{ {\dfrac{4}{3};4} \right\}.\)
Từ khóa » Bỏ Trị Tuyệt đối
-
Cách Phá Dấu Giá Trị Tuyệt đối Hay Nhất - Toploigiai
-
Hướng Dẫn Giải Phương Trình Chứa Dấu Giá Trị Tuyệt đối
-
Giá Trị Tuyệt đối – Wikipedia Tiếng Việt
-
BỎ DẤU GIÁ TRỊ TUYỆT ĐỐI VÀ RÚT GỌN BIỂU THỨC. TOÁN LỚP 8
-
Cách Giải Phương Trình Chứa ẩn Dưới Dấu Giá Trị Tuyệt đối - Hayhochoi
-
Lý Thuyết: Phương Trình Chứa Dấu Giá Trị Tuyệt đối
-
Giải Bất Phương Trình Chứa Dấu Giá Trị Tuyệt Đối - Marathon
-
Giá Trị Tuyệt đối Là Gì? Tính Chất Và Các Dạng Bài Tập Giá Trị Tuyệt đối Từ A
-
Bài 5: Phương Trình Chứa Dấu Giá Trị Tuyệt đối - Lib24.Vn
-
[ Giá Trị Tuyệt đối Là Gì ? ] Giá Trị Của Số Hữu Tỉ, Lớp 6, Lớp7, Lớp 8
-
Cách Giải Phương Trình Chứa Dấu Giá Trị Tuyệt đối - Đại Số 8
-
Cách Bấm Giá Trị Tuyệt đối Trên Máy Tính để Tìm X, Giải Phương Trình
-
Phương Trình Chứa Dấu Giá Trị Tuyệt đối Và Cách Giải – Toán Lớp 8