Lý Thuyết Về Hàm Số Liên Tục: Bài 3. Hàm Số Liên Tục

Tìm kiếm Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Lý thuyết về hàm số liên tục: Bài 3. Hàm số liên... Lý thuyết về hàm số liên tục: Bài 3. Hàm số liên tục. Hàm số y = f(x) liên tục trên khoảng nếu nó liên tục tại mọi điểm thuộc khoảng đó.

Lý thuyết về hàm số liên tục

Tóm tắt kiến thức

1. Hàm số liên tục

Định nghĩa. Cho hàm số \(y = f(x)\)  xác định trên khoảng \(K\) và \(x_0∈ K\) . Hàm số \(y = f(x)\) đươc gọi là liên tục tại \(x_0\) nếu \(\underset{x\rightarrow x_{0}}{lim} f(x) = f(x_0)\).

+) Hàm số \(y = f(x)\) không liên tục tại \(x_0\) được gọi là gián đoạn tại điểm đó.

+) Hàm số \(y = f(x)\) liên tục trên khoảng nếu nó liên tục tại mọi điểm thuộc khoảng đó.

+) Hàm số \(y = f(x)\) liên tục trên đoạn \([a; b]\) nếu nó liên tục trên khoảng \((a; b)\) và \(\underset{x\rightarrow a^{+}}{lim} f(x) = f(a)\); \(\underset{x\rightarrow b^{-}}{lim} f(x)= f(b)\).

Đồ thị của hàm số liên tục trên một khoảng là một "đường liền” trên khoảng đó.

2. Các định lí

Định lí 1.

Advertisements (Quảng cáo)

a) Hàm số đa thức liên tục trên toàn bộ tập số thực \(\mathbb R\).

b) Hàm số phân thức hữu tỉ (thương của hai đa thức) và các hàm số lượng giác liên tục trên từng khoảng của tập xác định của chúng.

Định lí 2.

Giả sử \(y = f(x)\) và \(y = g(x)\) là hai hàm số liên tục tại điểm \(x_0\). Khi đó:

a) Các hàm số \(y = f(x) + g(x), y = f(x) - g(x)\) và \(y = f(x). g(x)\) liên tục tại \(x_)\);

b) Hàm số \(y = \frac{f(x)}{g(x)}\) liên tục tại \(x_0\) nếu \(g(x_0) ≠ 0\).

Định lí 3.

Nếu hàm số \(y = f(x)\) liên tục trên đoạn \([a; b]\) và \(f(a).f(b) <0\), thì tồn tại ít nhất một điểm \(c ∈ (a; b)\) sao cho \(f(c) = 0\).

Định lí 3 thường được áp dụng để chứng minh sự tồ tại nghiệm của phương trình trên một khoảng và nó còn được phát triển dưới dạng khác như sau:

Cho hàm số \(y = f(x)\) liên tục trên đoạn \([a; b]\) và \(f(a).f(b) < 0\). Khi đó phương trình \(f(x) = 0\) có ít nhất một nghiệm trong khoảng \((a; b)\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

  • SGK Toán 11 - Kết nối tri thức
  • SGK Toán 11 - Chân trời sáng tạo
  • SGK Toán 11 - Cánh diều
  • SGK Toán 11 - Cùng khám phá
  • SBT Toán 11 - Kết nối tri thức
  • SBT Toán 11 - Chân trời sáng tạo
  • SBT Toán 11 - Cánh diều
  • Môn học khác Lớp 11

Advertisements (Quảng cáo)

Danh sách bài tập

Câu hỏi 2 trang 138 SGK Đại số và Giải tích lớp 11: Trong biểu thức xác định h(x) cho ở Ví dụ 2,... Câu hỏi 4 trang 139 SGK Đại số và Giải tích 11: Hãy tìm hai số a và b thỏa mãn 1 < a... Câu hỏi 1 trang 135 Đại số và Giải tích 11: Bài 3. Hàm số liên tục Bài 5 trang 141 sgk đại số 11: Bài 3. Hàm số liên tục Bài 6 trang 141 sgk đại số 11: Bài 3. Hàm số liên tục Bài 4 trang 141 sgk đại số 11: Bài 3. Hàm số liên tục

Mới cập nhật

Xác định độ phức tạp của thuật toán sắp xếp nổi bọt sau: def BubbleSort(A): n = len(A) for i in range(n-1): for j... Dựa vào hướng dẫn của Nhiệm vụ 2 trang 116 SGK kết hợp kiến thức thực tế của bản thân Lời giải Câu hỏi... Các thiết bị di động thực tế cũng là máy tính cá nhân Dựa vào kiến thức thực tế của bản thân để trả lời câu hỏi Vận dụng kiến thức giải Câu hỏi 2 trang 9... Câu 4.56 trang 143 Sách Toán Đại số lớp 11 SBT Nâng cao: Tìm các giới hạn sau Tìm các giới hạn sau. Câu 4.56 trang 143 sách bài tập Đại số và Giải tích 11 Nâng cao - Bài 6: Một... Câu 1 trang 228 SGK Hóa 11 Nâng cao, Trong phòng thí nghiệm, để tiêu hủy các mẫu natri dư, trong các cách dưới... Bài 54: Ancol: Tính chất hóa học và ứng dụng - Câu 1 trang 228 SGK Hóa học 11 Nâng cao. Trong phòng thí... Phân tích bài thơ Vội vàng trong tập Thơ thơ (1938) của Xuân Diệu, Cảm nhận về thời gian của Xuân Diệu gắn liền... Vội vàng - Xuân Diệu - Phân tích bài thơ Vội vàng trong tập Thơ thơ (1938) của Xuân Diệu. Cảm nhận về thời... Phân tích bài thơ số 28 của R.Tago, Sau tập Thơ Dâng được giải thưởng Nobel, năm 1914, Tago xuất bản tập thơ “Người... Bài thơ số 28 - Ta-go - Phân tích bài thơ số 28 của R.Tago. Sau tập Thơ Dâng được giải thưởng Nobel, năm... © Copyright 2017 - BaitapSGK.com

Từ khóa » Hàm Số Liên Tục Toán 11 Lý Thuyết