Nhân đa Thức Với đa Thức - Thực Hành Toán 8 Cùng Toppy

4.9/5 - (108 bình chọn)

Nhân đa thức với đa thức lớp 8 là phần kiến thức vô cùng quan trọng, có liên quan chặt sẽ với những bài học đại số tiếp theo. Tuy nhiên các bài tập đa dạng cũng khiến nhiều học sinh ngán ngẩm. Nhưng đừng quá lo lắng nhé! Hôm nay, Toppy sẽ chia sẻ đến các bạn công thức tổng quát cùng một số bài tập ứng dụng về chủ đề nhân đa thức với đa thức ngay sau đây!

Table of Contents

Toggle
  • Quy tắc nhân đa thức với đa thức
    • Một số dạng nhân đa thức với đa thức bài tập
      • Bài 1: Thực hiện phép tính:
      • Bài 2: Thực hiện phép tính
      • Bài 3: Chứng minh:
      • Bài 4: Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2.
      • Bài 5: Chứng minh rằng biểu thức n(2n – 3) – 2n(n + 1) luôn chia hết cho 5 với mọi số nguyên n.
      • Bài 6: Tìm x, biết:
      • Bài 7: Tìm ba số tự nhiên chẵn liên tiếp, biết tích của hai số sau lớn hơn tích của hai số đầu là 192.
      • Bài 8: Làm tính nhân:
    • Học toán thế nào cho hiệu quả?
    • Giải pháp toàn diện giúp con đạt điểm 9-10 dễ dàng cùng Toppy
Quy tắc nhân đa thức với đa thức
Quy tắc nhân đa thức với đa thức được sử dụng xuyên suốt trong quá trình học đại số
Quy tắc nhân đa thức với đa thức được sử dụng xuyên suốt trong quá trình học đại số

Quy tắc này được phát biểu như sau: Muốn nhân một đa thức với một đa thức, ta nhân từng hạng tử của đa thức này, với từng hạng tử của đa thức kia, rồi cộng các hạng tử lại với nhau.

Cách nhân đa thức với đa thức được phát triển từ công thức đơn thức nhân đa thức. Quy tắc này được thể hiện bởi biểu thức:

(A+B)(C+D) = A(C+D) + B(C+D)  = AC + AD + BC + BD

Quy tắc nhân đa thức với đa thức có thể áp dụng với những biểu thức chứa nhiều ẩn số.

Các bài tập nhân đa thức với đa thức nâng cao hay cơ bản cũng đều tuân theo quy tắc này.

>> Xem thêm: Nhân đơn thức với đa thức

Một số dạng nhân đa thức với đa thức bài tập

Áp dụng quy tắc nhân đa thức với đa thức để giải bài tập
Áp dụng quy tắc nhân đa thức với đa thức để giải bài tập

Bài 1: Thực hiện phép tính:

a, (5x – 2y)(x2 – xy + 1)

b, (x – 1)(x + 1)(x + 2)

c, 12 x2y2 (2x + y)(2x – y)

Lời giải:

a, (5x – 2y)(x2 – xy + 1)

= 5x3 – 5x2y + 5x – 2x2y + 2xy2 – 2y

= 5x3 – 7x2y + 5x + 2xy2 – 2y

b, (x – 1)(x + 1)(x + 2)

= (x2 + x – x – 1)(x + 2)

= (x2 – 1)(x + 2)

= x3 + 2x2 – x – 2

c, 12 x2y2 (2x + y)(2x – y)

= 12 x2y2 (4x2 – 2xy + 2xy – y2)

= 12 x2y2 (4x2 – y2)

= 2x4y2 – 12x2y4

Bài 2: Thực hiện phép tính

a, (1/2 x – 1) (2x – 3)

b, (x – 7)(x – 5)

c, (x – 1/2 )(x + 1/2 )(4x – 1)

Lời giải:

a, (1/2 x – 1) (2x – 3)

= x2 – 3/2 x – 2x + 3

= x2 – 7/2 x + 3

b, (x –7)(x –5)

= x2 – 5x – 7x + 3/5

= x2 – 12x + 3/5

c, (x – 1/2 )(x + 1/2 )(4x – 1)

= (x2 + 1/2 x – 1/2 x – 1/4 )(4x – 1)

= (x2 – 1/4 )(4x – 1)

= 4x3 – x2 – x + 1/4

Bài 3: Chứng minh:

a, (x – 1)(x2 + x + 1) = x3 – 1

b, (x3 + x2y + xy2 + y3)(x – y) = x4 – y4

Lời giải:

a, Ta có: (x – 1)(x2 + x +1)

= x3 + x2 + x – x2 – x – 1

= x3 – 1

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b, Ta có: (x3 + x2y + xy2 + y3)(x – y)

= x4 + x3y + x2y2 + xy3 – x3y – x2y2 – xy3 – y4

= x4 – y4

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Bài 4: Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2.

Lời giải:

Ta có: a chia cho 3 dư 1 ⇒ a = 3q + 1 (q ∈N)

b chia cho 3 dư 2 ⇒ b = 3k + 2 (k ∈N)

A.b = (3q +1)(3k + 2) = 9qk + 6q + 3k +2

Vì 9 ⋮ 3 nên 9qk ⋮ 3

Vì 6 ⋮ 3 nên 6q ⋮ 3

Vậy a.b = 9qk + 6q + 3k + 2 = 3(3qk + 2q + k) +2 chia cho 3 dư 2.

Bài 5: Chứng minh rằng biểu thức n(2n – 3) – 2n(n + 1) luôn chia hết cho 5 với mọi số nguyên n.

Lời giải:

Ta có: n(2n – 3) – 2n(n + 1) = 2n2 – 3n – 2n2 – 2n = – 5n

Vì -5 ⋮ 5 nên -5n ⋮ 5 với mọi n ∈ Z .

Bài 6: Tìm x, biết:

(12x – 5)(4x – 1) + (3x – 7)(1 -16x) = 81.

Đáp án và hướng dẫn giải:

(12x – 5)(4x – 1) + (3x – 7)(1 -16x) = 81

4x(12x-5) – (12x-5) + (3x-7) -16x (3x-7) =81

48x2 – 20x – 12x  + 5 + 3x – 7 – 48x2 + 112x = 81

83x – 2 = 81

83x = 83

x = 1

Bài 7: Tìm ba số tự nhiên chẵn liên tiếp, biết tích của hai số sau lớn hơn tích của hai số đầu là 192.

Đáp án và hướng dẫn giải:

Gọi ba số chẵn liên tiếp là a, a + 2, a + 4.

Ta có: (a + 2)(a + 4) – a(a + 2) = 192

a2 + 4a + 2a + 8 – a2 – 2a = 192

4a = 192 – 8 = 184

a = 46

Vậy ba số đó là 46, 48, 50.

Cách khác giải bài 14:

Gọi ba số tự nhiên chẵn liên tiếp là 2x + 2 và 2x + 4 với x ∈ N

Ta có: (2x + 2)(2x +4) = 2x(2x + 2) + 192

<=> 2x(2x + 2) + 4(2x + 2) = 2x(2x + 2) + 192

<=> 4x2 + 4x + 8x + 8 = 4x2 + 4x + 192

<=> 4x2 + 4x + 8x – 4x2 – 4x = 192 – 8

<=> 8x = 184

=> x = 184 : 8 = 23

Các số tự nhiên cần tìm là: 46; 48 và 50

Bài 8: Làm tính nhân:

a) (1/2x + y)(1/2x + y);

b) (x -1/2y)(x – 1/2y)

Đáp án và hướng dẫn giải:

a) (1/2x + y)(1/2x + y) = 1/2x . 1/2x +1/2 x . y + y . 1/2x + y . y

= 1/4x2 +1/2 xy +1/2 xy + y2

=1/4x2 + xy + y2

b) (x – 1/2y)(x – 1/2y) = x . x + x(-1/2y) + (-1/2y . x) + (- 1/2y)(-1/2y)

= x2 – 1/2xy – 1/2xy + 1/4y2

= x2 – xy + 1/4y2

Học toán thế nào cho hiệu quả?

Toán học sẽ thực sự trở nên thú vị nếu có phương pháp học hiệu quả
Toán học sẽ thực sự trở nên thú vị nếu có phương pháp học hiệu quả

Toán học là bộ môn có lượng kiến thức rất đa dạng, đặc biệt là chúng có mối quan hệ chặt chẽ với nhau, do vậy mà một lỗ hổng kiến thức có thể sẽ gây khó khăn cho việc tiếp thu tiếp theo. Chúng ta nên có phương pháp học toán hiệu quả và phù hợp, đây chính là yếu tố ảnh hưởng rất lớn đến hiệu quả học cũng như lượng kiến thức mà chúng ta thực sự nhận được. Một số bí quyết học toán được khuyến khích sử dụng như:

  • Lắng nghe và ghi chép những thông tin hữu ích từ lời giảng của thầy cô
  • Không nên chỉ tập trung vào phần bài tập mà xem nhẹ phần lý thuyết 
  • Liên tục thực hành, làm quen và rèn luyện với nhiều dạng bài tập, nhiều phương pháp giải để tích lũy kinh nghiệm.
  • Học từ dễ đến khó, làm quen với các dạng từ cơ bản trước, sau đó mời đến nâng cao dần dần.
  • Tóm tắt đề bài trước khi giải để dễ dàng nhận biết dữ liệu của đề, tránh bỏ sót chi tiết quan trọng
  • Tự rủ cá bài học cho riêng mình, lựa chọn được phương pháp giải thích hợp và nhận biết các dạng bài.
  • Ghi chú riêng với những lỗi sai, cách khắc phục chúng để tránh lặp lại ở những lần sau.

Trên đây là những kiến thức lý thuyết và bài tập về nhân đa thức với đa thức toán 8 mà chúng tôi muốn chia sẻ. Hy vọng bài viết bổ ích đã giúp các bạn có những giây phút khám phá nhân đa thức với đa thức cùng Toppy thật thú vị và hiệu quả. Để tìm hiểu thêm kiến thức về nhiều môn học khác nữa, hãy truy cập website:https://toppy.vn/ nhé! Chúc các bạn đạt kết quả học tập thật tốt!

Tìm hiểu thêm: 

  • Những hằng đẳng thức đáng nhớ
  • Phép nhân các phân thức đại số – Luyện lý thuyết và bài tập cùng Toppy

Giải pháp toàn diện giúp con đạt điểm 9-10 dễ dàng cùng Toppy

Với mục tiêu lấy học sinh làm trung tâm, Toppy chú trọng việc xây dựng cho học sinh một lộ trình học tập cá nhân, giúp học sinh nắm vững căn bản và tiếp cận kiến thức nâng cao nhờ hệ thống nhắc học, thư viện bài tập và đề thi chuẩn khung năng lực từ 9 lên 10.

Kho học liệu khổng lồ

Kho video bài giảng, nội dung minh hoạ sinh động, dễ hiểu, gắn kết học sinh vào hoạt động tự học. Thư viên bài tập, đề thi phong phú, bài tập tự luyện phân cấp nhiều trình độ.Tự luyện – tự chữa bài giúp tăng hiệu quả và rút ngắn thời gian học. Kết hợp phòng thi ảo (Mock Test) có giám thị thật để chuẩn bị sẵn sàng và tháo gỡ nỗi lo về bài thi IELTS.

Học online cùng Toppy
Học online cùng Toppy

Nền tảng học tập thông minh, không giới hạn, cam kết hiệu quả

Chỉ cần điện thoại hoặc máy tính/laptop là bạn có thể học bất cứ lúc nào, bất cứ nơi đâu. 100% học viên trải nghiệm tự học cùng TOPPY đều đạt kết quả như mong muốn. Các kỹ năng cần tập trung đều được cải thiện đạt hiệu quả cao. Học lại miễn phí tới khi đạt!

Tự động thiết lập lộ trình học tập tối ưu nhất

Lộ trình học tập cá nhân hóa cho mỗi học viên dựa trên bài kiểm tra đầu vào, hành vi học tập, kết quả luyện tập (tốc độ, điểm số) trên từng đơn vị kiến thức; từ đó tập trung vào các kỹ năng còn yếu và những phần kiến thức học viên chưa nắm vững.

Trợ lý ảo và Cố vấn học tập Online đồng hành hỗ trợ xuyên suốt quá trình học tập

Kết hợp với ứng dụng AI nhắc học, đánh giá học tập thông minh, chi tiết và đội ngũ hỗ trợ thắc mắc 24/7, giúp kèm cặp và động viên học sinh trong suốt quá trình học, tạo sự yên tâm giao phó cho phụ huynh.

Từ khóa » Cách Nhân đa Thức Với đa Thức