Phân Tích Tương Quan Pearson Trong SPSS - Phạm Lộc Blog

Tương quan tuyến tính giữa hai biến là mối tương quan mà khi biểu diễn giá trị quan sát của hai biến trên mặt phẳng Oxy, các điểm dữ liệu có xu hướng tạo thành một đường thẳng. Theo Gayen (1951) , trong thống kê, các nhà nghiên cứu sử dụng hệ số tương quan Pearson (ký hiệu r) để lượng hóa mức độ chặt chẽ của mối liên hệ tuyến tính giữa hai biến định lượng. Nếu một trong hai hoặc cả hai biến không phải là biến định lượng (biến định tính, biến nhị phân,…) chúng ta sẽ không thực hiện phân tích tương quan Pearson cho các biến này.

Hệ số tương quan Pearson r có giá trị dao động từ -1 đến 1:

  • Nếu r càng tiến về 1, -1: tương quan tuyến tính càng mạnh, càng chặt chẽ. Tiến về 1 là tương quan dương, tiến về -1 là tương quan âm.
  • Nếu r càng tiến về 0: tương quan tuyến tính càng yếu.
  • Nếu r = 1: tương quan tuyến tính tuyệt đối, khi biểu diễn trên đồ thị phân tán Scatter như hình vẽ ở trên, các điểm biểu diễn sẽ nhập lại thành 1 đường thẳng.
  • Nếu r = 0: không có mối tương quan tuyến tính. Lúc này sẽ có 2 tình huống xảy ra. Một, không có một mối liên hệ nào giữa 2 biến. Hai, giữa chúng có mối liên hệ phi tuyến.

Andy Field (2009) cho rằng mặc dù có thể đánh giá mối liên hệ tuyến tính giữa hai biến qua hệ số tương quan Pearson, nhưng chúng ta cần thực hiện kiểm định giả thuyết hệ số tương quan này có ý nghĩa thống kê hay không. Kết quả kiểm định nếu sig kiểm định nhỏ hơn 0.05, cặp biến có tương quan tuyến tính với nhau; nếu sig lớn hơn 0.05, cặp biến không có tương quan tuyến tính (giả định lấy mức ý nghĩa 5% = 0.05).

Khi đã xác định hai biến có mối tương quan tuyến tính (sig nhỏ hơn 0.05), chúng ta sẽ xét đến độ mạnh/yếu của mối tương quan này thông qua trị tuyệt đối của r. Theo Andy Field (2009):

  • |r| < 0.1: mối tương quan rất yếu
  • |r| < 0.3: mối tương quan yếu
  • |r| < 0.5: mối tương quan trung bình
  • |r| ≥ 0.5: mối tương quan mạnh

Từ khóa » Hệ Số Tương Quan Pearson Là Gì