Sách Giải Bài Tập Toán Lớp 8 Bài 1: Đa Giác. Đa Giác Đều

Xem toàn bộ tài liệu Lớp 8: tại đây

Xem thêm các sách tham khảo liên quan:

  • Giải Sách Bài Tập Toán Lớp 8
  • Đề Kiểm Tra Toán Lớp 8
  • Sách Giáo Khoa Toán lớp 8 tập 1
  • Sách Giáo Khoa Toán lớp 8 tập 2
  • Sách Giáo Viên Toán Lớp 8 Tập 1
  • Sách Bài Tập Toán Lớp 8 Tập 2

Sách giải toán 8 Bài 1: Đa giác. Đa giác đều giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 8 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 8 Tập 1 Bài 1 trang 114: Tại sao hình gồm năm đoạn thẳng AB, BC, CD, DE, EA ở hình 118 không phải là đa giác ?

Lời giải

Hình 118 không phải là một đa giác vì DE và EA cùng nằm trên một đường thẳng

Trả lời câu hỏi Toán 8 Tập 1 Bài 1 trang 114: Tại sao các đa giác ở hình 112, 113, 114 không phải là đa giác lồi ?

Lời giải

– Hình 112: Đa giác nằm trên hai nửa mặt phẳng có bờ AB (hoặc bờ DE, hoặc bờ DC)

– Hình 113: Đa giác nằm trên hai nửa mặt phẳng có bờ BC (hoặc bờ CD)

– Hình 114: Đa giác nằm trên hai nửa mặt phẳng có bờ AB/ BC/ CD/ DE/ EA

Trả lời câu hỏi Toán 8 Tập 1 Bài 1 trang 114: Quan sát đa giác ABCDEG ở hình 119 rồi điền vào chỗ trống trong các câu sau:

Các đỉnh là các điểm: A, B, …

Các đỉnh kề nhau là: A và B, hoặc B và C, hoặc …

Các cạnh là các đoạn thẳng: AB, BC, …

Các đường chéo là các đoạn thẳng nối hai đỉnh không kề nhau: AC, CG, …

Các góc là: ∠A , ∠B , …

Các điểm nằm trong đa giác (các điểm trong của đa giác) là: M, N, …

Các điểm nằm ngoài đa giác (các điểm ngoài của đa giác) là: Q, …

Lời giải

Các đỉnh là các điểm: A, B, C, D, E, G

Các đỉnh kề nhau là: A và B, hoặc B và C, hoặc C và D, hoặc D và E, hoặc E và G, hoặc G và A

Các cạnh là các đoạn thẳng: AB, BC, CD, DE, EG, GA

Các đường chéo là các đoạn thẳng nối hai đỉnh không kề nhau: AC, CG, AD, AE, BG, BE, BD, CE, DG

Các góc là: ∠A , ∠B , ∠C , ∠D , ∠E , ∠G

Các điểm nằm trong đa giác (các điểm trong của đa giác) là: M, N, P

Các điểm nằm ngoài đa giác (các điểm ngoài của đa giác) là: Q, R

Trả lời câu hỏi Toán 8 Tập 1 Bài 1 trang 115: Hãy vẽ các trục đối xứng và tâm đối xứng của mỗi hình 120a, b, c, d (nếu có)

Lời giải

a) Trục đối xứng là các đường trung trực của tam giác đều

Tâm đối xứng là giao điểm ba đường trung trực

b) Trục đối xứng là đường thẳng nối hai trung điểm của hai cạnh đối nhau của hình vuông và hai đường chéo

Tâm đối xứng là giao điểm hai đường chéo

c) Trục đối xứng là đường thẳng nối đỉnh và trung điểm cạnh đối diện đỉnh đó

Tâm đối xứng là giao điểm của các trục đối xứng

d) Trục đối xứng là đường thẳng nối hai trung điểm của hai cạnh đối nhau của lục giác đều

Tâm đối xứng là giao điểm của các trục đối xứng

Bài 1 (trang 115 SGK Toán 8 Tập 1): Hãy vẽ phác một lục giác lồi.

Hãy nêu cách nhận biết một đa giác lồi.

Lời giải:

– Lục giác lồi ABCDEF

– Cách nhận biết một đa giác lồi:

Lần lượt xét các nửa mặt phẳng bờ là cạnh của đa giác, nếu đa giác luôn nằm hoàn toàn trong một nửa mặt phẳng thì đa giác là đa giác lồi.

Nếu có 1 cạnh mà đa giác nằm trên cả hai nửa mặt phẳng mà đường thẳng chứa cạnh là bờ thì đa giác không phải đa giác lồi.

Các bài giải Toán 8 Bài 1 khác

Bài 2 (trang 115 SGK Toán 8 Tập 1): Cho ví dụ về đa giác không đều trong mỗi trường hợp sau:

a) Có tất cả các cạnh bằng nhau.

b) Có tất cả các góc bằng nhau.

Lời giải:

a) Hình thoi có tất cả các cạnh bằng nhau nhưng các góc có thể không bằng nhau nên hình thoi không buộc phải là đa giác đều.

b) Hình chữ nhật có tất cả các góc bằng nhau nhưng các cạnh có thể không bằng nhau nên hình chữ nhật không buộc phải là đa giác đều.

Các bài giải Toán 8 Bài 1 khác

Bài 3 (trang 115 SGK Toán 8 Tập 1): Cho hình thoi ABCD có góc ∠A = 60o. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng đa giác EBFGDH là lục giác đều.

Lời giải:

+ ABCD là hình thoi

⇒ AD // BC

+ ABCD là hình thoi ⇒ AB = BC = CD = DA

Mà E, F, G, H là trung điểm của 4 đoạn thẳng trên

⇒ AE = EB = BF = FC = CG = GD = DH = HA.

ΔAEH có góc A = 60º và AE = AH nên là tam giác đều

+ Lại có ΔAEH đều

⇒ EH = AH = AE.

Chứng minh tương tự : FG = FC = CG

⇒ EB = BF = FG = GD = DH = HE.

Vậy EBFGDH có tất cả các góc bằng nhau và tất cả các cạnh bằng nhau nên là lục giác đều.

Các bài giải Toán 8 Bài 1 khác

Bài 4 (trang 115 SGK Toán 8 Tập 1): Điền số thích hợp vào các ô trống trong bảng sau:

Lời giải:

Các bài giải Toán 8 Bài 1 khác

Bài 5 (trang 115 SGK Toán 8 Tập 1): Tính số đo mỗi góc của ngũ giác đều, lục giác đều, n – giác đều.

Lời giải:

Các bài giải Toán 8 Bài 1 khác

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Action: Post ID: Post Nonce: ☆ ☆ ☆ ☆ ☆ Processing your rating... Đánh giá trung bình {{avgRating}} / 5. Số lượt đánh giá: {{voteCount}} {{successMsg}} {{#errorMsg}} {{.}} {{/errorMsg}} There was an error rating this post!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1068

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

Từ khóa » đa Giác Lớp 8 3