\(\sqrt{3x^2 6x 7} \sqrt{5x^2 10x 14}=4-2x-x^2\) - Hoc24

HOC24

Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng
  • Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Đóng Đăng nhập Đăng ký

Lớp học

  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Lớp 2
  • Lớp 1

Môn học

  • Toán
  • Vật lý
  • Hóa học
  • Sinh học
  • Ngữ văn
  • Tiếng anh
  • Lịch sử
  • Địa lý
  • Tin học
  • Công nghệ
  • Giáo dục công dân
  • Tiếng anh thí điểm
  • Đạo đức
  • Tự nhiên và xã hội
  • Khoa học
  • Lịch sử và Địa lý
  • Tiếng việt
  • Khoa học tự nhiên
  • Hoạt động trải nghiệm
  • Hoạt động trải nghiệm, hướng nghiệp
  • Giáo dục kinh tế và pháp luật

Chủ đề / Chương

Bài học

HOC24

Khách Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng
  • Tất cả
  • Toán
  • Vật lý
  • Hóa học
  • Sinh học
  • Ngữ văn
  • Tiếng anh
  • Lịch sử
  • Địa lý
  • Tin học
  • Công nghệ
  • Giáo dục công dân
  • Tiếng anh thí điểm
  • Hoạt động trải nghiệm, hướng nghiệp
  • Giáo dục kinh tế và pháp luật
Hãy tham gia nhóm Học sinh Hoc24OLM Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài Chọn lớp: Tất cả Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 Chọn môn: Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Âm nhạc Mỹ thuật Gửi câu hỏi ẩn danh Tạo câu hỏi Hủy

Câu hỏi

Hủy Xác nhận phù hợp Chọn lớp Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Mới nhất Mới nhất Chưa trả lời Câu hỏi hay Hỏi Làm Gì Hỏi Làm Gì 12 tháng 8 2019 lúc 9:39

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

Lớp 9 Toán Chương I - Căn bậc hai. Căn bậc ba Những câu hỏi liên quan nguyen ngoc son
  • nguyen ngoc son
3 tháng 9 2021 lúc 21:34

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

Xem chi tiết Lớp 9 Toán Chương I - Căn bậc hai. Căn bậc ba 0 0 Khách Gửi Hủy ILoveMath
  • ILoveMath
22 tháng 8 2021 lúc 17:17

Tìm x:

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

Xem chi tiết Lớp 8 Toán 1 1 Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm Giáo viên 22 tháng 8 2021 lúc 17:30

\(VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=5\)

\(VP=5-\left(x+1\right)^2\le5\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Đúng 1 Bình luận (0) Khách Gửi Hủy Nhật Minh
  • Nhật Minh
3 tháng 12 2023 lúc 13:25

giải phương trình

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

Xem chi tiết Lớp 9 Toán 1 0 Khách Gửi Hủy Nguyễn Lê Phước Thịnh Nguyễn Lê Phước Thịnh CTV 3 tháng 12 2023 lúc 13:30

ĐKXĐ: \(x\in R\)

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

=>\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x+1-5=0\)

=>\(\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+\left(x+1\right)^2=0\)

=>\(\dfrac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>

\(\dfrac{3x^2+6x+3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+5}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>\(\dfrac{3\left(x^2+2x+1\right)}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x^2+2x+1\right)}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>\(\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)

=>\(\left(x+1\right)^2=0\)

=>x+1=0

=>x=-1(nhận)

Đúng 1 Bình luận (0) Khách Gửi Hủy Lê Minh Đức
  • Lê Minh Đức
15 tháng 10 2016 lúc 16:55

Giải phương trình: \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

Xem chi tiết Lớp 9 Toán Câu hỏi của OLM 5 0 Khách Gửi Hủy Hoàng Lê Bảo Ngọc Hoàng Lê Bảo Ngọc 15 tháng 10 2016 lúc 18:51

Ta có : \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=-x^2-2x+4\)

Trước hết ta xét xem \(f\left(x\right)=-x^2-2x+4\) là hàm số đồng biến hay nghịch biến.

Xét \(x_1< x_2< -1\), khi đó : \(f\left(x_1\right)-f\left(x_2\right)=-x_1^2-2x_1+4+x_2^2+2x_2-4=\left(x_2-x_1\right)\left(x_2+x_1+2\right)< 0\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\). Vậy f(x) đồng biến với mọi \(x< -1\) 

Tương tự ta chứng minh được :

f(x) nghịch biến với mọi x > -1\(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) đồng biến với mọi x > -1\(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) nghịch biến với mọi x < -1

+ Với x = -1 thì VT = VP => là nghiệm của pt trên

+ Với x < -1 thì do \(f'\left(x\right)\) nghịch biến nên VT > 5 , \(f\left(x\right)\) đồng biến nên VP < 5 => vô lí

+ Với x > -1 thì do \(f'\left(x\right)\) đồng biến nên VT > 5 , \(f\left(x\right)\)nghịch biến nên VP < 5 => vô lí

Vậy x = -1 là nghiệm duy nhất của phương trình.

Đúng 0 Bình luận (0) Khách Gửi Hủy alibaba nguyễn alibaba nguyễn 15 tháng 10 2016 lúc 19:01

Ta có 

\(\sqrt{3x^2+6x+7}=\sqrt{3\left(x+1\right)^2+4}\ge2\)

\(\sqrt{5x^2+10x+14}=\sqrt{5\left(x+1\right)^2+9}\ge3\)

4 - 2x - x2 = 5 - (x + 1)2 \(\le5\)

Ta có VT \(\ge5\);VP \(\le\)5

Nên dấu bằng xảy ra khi x = - 1

Đúng 0 Bình luận (0) Khách Gửi Hủy ➻❥L҉ê❄Q҉U҉A҉N҉G҉❄T҉U҉ấN҉... ➻❥L҉ê❄Q҉U҉A҉N҉G҉❄T҉U҉ấN҉... 20 tháng 6 2017 lúc 22:20

Ta có : √3x2+6x+7+√5x2+10x+14=−x2−2x+4

Trước hết ta xét xem ƒ (x)=−x2−2x+4 là hàm số đồng biến hay nghịch biến.

Xét x1<x2<−1, khi đó : ƒ (x1)−ƒ (x2)=−x12−2x1+4+x22+2x2−4=(x2−x1)(x2+x1+2)<0

⇒ƒ (x1)<ƒ (x2). Vậy f(x) đồng biến với mọi x<−1 

Tương tự ta chứng minh được :

f(x) nghịch biến với mọi x > -1ƒ '(x)=√3x2+6x+7+√5x2+10x+14 đồng biến với mọi x > -1ƒ '(x)=√3x2+6x+7+√5x2+10x+14 nghịch biến với mọi x < -1

+ Với x = -1 thì VT = VP => là nghiệm của pt trên

+ Với x < -1 thì do ƒ '(x) nghịch biến nên VT > 5 , ƒ (x) đồng biến nên VP < 5 => vô lí

+ Với x > -1 thì do ƒ '(x) đồng biến nên VT > 5 , ƒ (x)nghịch biến nên VP < 5 => vô lí

Vậy x = -1 là nghiệm duy nhất của phương trình.

Đúng 0 Bình luận (0) Khách Gửi Hủy Xem thêm câu trả lời Trang-g Seola-a
  • Trang-g Seola-a
12 tháng 10 2018 lúc 15:05

Tìm x biết: 

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

Xem chi tiết Lớp 9 Toán Câu hỏi của OLM 2 0 Khách Gửi Hủy Dương Lam Hàng Dương Lam Hàng 12 tháng 10 2018 lúc 15:42

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

Ta có: \(VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\)

                   \(=\sqrt{3\left(x^2+2x+1\right)+3}+\sqrt{5\left(x^2+2x+1\right)+9}\)

                      \(\ge\sqrt{4}+\sqrt{9}=2+\sqrt{9}\)

Mặt khác: \(VP=4-2x-x^2=-\left(x^2+2x+1\right)+5=5-\left(x+1\right)^2\le5\)

Hai vế của phương trình bằng 5

<=> x + 1 = 0

<=> x       = -1

Vậy x = - 1 là nghiệm của phương trình

P/s: Đây là cách giải của mình, mong các bạn góp ý. Cảm ơn

Đúng 0 Bình luận (0) Khách Gửi Hủy Trang-g Seola-a Trang-g Seola-a 13 tháng 10 2018 lúc 6:20

tại sao VT \(\ge\sqrt{4}+\sqrt{9}\)???????

Đúng 0 Bình luận (0) Khách Gửi Hủy Tường Nguyễn Thế
  • Tường Nguyễn Thế
29 tháng 10 2017 lúc 18:11

Giải phương trình: \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

Xem chi tiết Lớp 9 Toán Bài 6: Giải bài toán bằng cách lập hệ phương trình... 1 0 Khách Gửi Hủy tran nguyen bao quan tran nguyen bao quan 7 tháng 10 2018 lúc 10:56

Ta có \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=2+3=5\left(1\right)\)\(4-2x-x^2=-\left(x^2+2x-4\right)=-\left(x^2+2x+1-5\right)=-\left(x+1\right)^2+5\le5\left(2\right)\)

Từ (1),(2)\(\Rightarrow5\le-\left(x-1\right)^2+5\le5\Rightarrow-\left(x-1\right)^2+5=5\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\left(tm\right)\)

Đúng 0 Bình luận (0) Khách Gửi Hủy Nguyễn Anh Khoa
  • Nguyễn Anh Khoa
9 tháng 2 2017 lúc 15:13

Giải phương trình: \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

Xem chi tiết Lớp 9 Toán 1 0 Khách Gửi Hủy Lightning Farron Lightning Farron 9 tháng 2 2017 lúc 18:44

Ta có: \(VT=\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+9}\)

\(=\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}\)

\(=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\)

\(\ge\sqrt{4}+\sqrt{9}=2+3=5\left(1\right)\)

Lại có \(VP=4-2x-x^2=5-\left(x^2+2x+1\right)=5-\left(x+1\right)^2\le5\left(2\right)\)

Từ (1) và (2) ta có \(VT\ge5\ge VP\) xảy ra khi \(VT=VP=5\)

\(\Leftrightarrow\left\{\begin{matrix}\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=5\\4-2x-x^2=5\end{matrix}\right.\)\(\Leftrightarrow x=-1\)

Đúng 0 Bình luận (0) Khách Gửi Hủy nguyễn minh
  • nguyễn minh
23 tháng 3 2020 lúc 19:35

giải phương trình \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

Xem chi tiết Lớp 9 Toán Violympic toán 9 1 0 Khách Gửi Hủy Nguyễn Thành Trương Nguyễn Thành Trương 23 tháng 3 2020 lúc 19:40

\( VT = \sqrt {3{{\left( {x + 1} \right)}^2} + 4} + \sqrt {5{{\left( {x + 1} \right)}^2} + 9} \\ \Rightarrow VP \ge 2 + 3 = 5\forall x \ge - 1\left( 1 \right)\\ VP = 5 - {\left( {x + 1} \right)^2} \le 5\forall x \ge - 1\left( 2 \right) \)

Từ $(1)$ và $(2)$ để \(VP=VT=5 \Leftrightarrow x =-1\)

Đúng 0 Bình luận (0) Khách vãng lai đã xóa Khách Gửi Hủy Kim Tuyết Hiền
  • Kim Tuyết Hiền
4 tháng 4 2020 lúc 16:17

Giải phương trình:

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

Xem chi tiết Lớp 9 Toán Câu hỏi của OLM 1 0 Khách Gửi Hủy IS IS 4 tháng 4 2020 lúc 18:00

ta có

zế trái :\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=5\)

zế phải : \(4-2x-x^2=5-\left(x+1\right)^2\le5\)

zậy 2 zế đều = 5 , khi đó x=-1 . Zới giá trị này cả 2 bất đẳng thức này đều trở thành đẳng thức

KL ::

Đúng 0 Bình luận (0) Khách vãng lai đã xóa Khách Gửi Hủy

Khoá học trên OLM (olm.vn)

  • Toán lớp 9
  • Ngữ văn lớp 9
  • Tiếng Anh lớp 9
  • Vật lý lớp 9
  • Hoá học lớp 9
  • Sinh học lớp 9
  • Lịch sử lớp 9
  • Địa lý lớp 9

Từ khóa » Căn(3x^2+6x+7)