Tam Giác đồng Dạng Là Gì? Cách Chứng Minh Hai ... - DINHNGHIA.VN

Số lượt đọc bài viết: 46.674

Tam giác đồng dạng là gì? Cách chứng minh tam giác đồng dạng như nào? Lý thuyết, bài tập và cách giải các dạng toán về hai tam giác đồng dạng? Trong phạm vi bài viết dưới đây, cùng DINHNGHIA.VN tìm hiểu về chủ đề trên nhé!

MỤC LỤC

  • Lý thuyết hai tam giác cùng đồng dạng
    • Định nghĩa hai tam giác đồng dạng
    • Các trường hợp đồng dạng của tam giác thường
    • Các định lý đồng dạng của tam giác vuông
  • Cách chứng minh hai tam giác đồng dạng
    • Chứng minh hai tam giác đồng dạng – Hệ thức
    • Chứng minh hai tam giác đồng dạng – Định lí Talet và Hai đường thẳng song song
    • Chứng minh hai tam giác đồng dạng – góc tương ứng bằng nhau

Lý thuyết hai tam giác cùng đồng dạng

Định nghĩa hai tam giác đồng dạng

Hai tam giác đồng dạng là gì? “Đồng dạng” là từ Hán Việt và vốn có nghĩa là giống nhau. Hai tam giác đồng dạng với nhau khi chúng có các góc tương ứng bằng nhau và các cạnh tương ứng tỉ lệ.

Tam giác ABC và tam giác A’B’C’ được gọi là đồng dạng với nhau nếu: \(\hat{A}=\hat{A’}; \hat{B}=\hat{B’};\hat{C}=\hat{C’}\)

và \(\frac{A’B’}{AB}=\frac{B’C’}{BC}=\frac{A’C’}{AC}\)

Kí hiệu hai tam giác đồng dạng: \(\bigtriangleup ABC \sim \bigtriangleup A’B’C’\)

Tỉ số:  \(\frac{A’B’}{AB}=\frac{B’C’}{BC}=\frac{A’C’}{AC}=k\) được gọi là tỉ số đồng dạng.

định nghĩa hai tam giác đồng dạng

Các trường hợp đồng dạng của tam giác thường

  • Trường hợp 1: Ba cạnh tương ứng tỉ lệ nhau (c – c – c).

Xét hai tam giác ABC và DEF có:

\(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}\)

Suy ra: \(\bigtriangleup ABC \sim \bigtriangleup DEF\) (c – c – c)

  • Trường hợp 2: Hai cạnh tương ứng tỉ lệ nhau – góc xen giữa hai cạnh bằng nhau (c – g – c).

Xét hai tam giác ABC và DEF, ta có:

\(\frac{AB}{DE}=\frac{AC}{DF}\)

\(\hat{A}=\hat{D}\)

Suy ra: \(\bigtriangleup ABC \sim \bigtriangleup DEF\) (c – g – c)

  • Trường hợp 3: Hai góc tương ứng bằng nhau (g – g)

Xét hai tam giác ABC và DEF có:

\(\hat{A}=\hat{D}\)

\(\hat{B}=\hat{E}\)

Suy ra: \(\bigtriangleup ABC \sim \bigtriangleup DEF\) (g – g)

tam giác đồng dạng và các trường hợp đồng dạng của tam giác thường

Các định lý đồng dạng của tam giác vuông

  • Định lý 1: Cạnh huyền – Cạnh góc vuông

Nếu cạnh huyền và cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác đó đồng dạng.

  • Định lý 2: Hai cạnh góc vuông

Nếu hai cạnh góc vuông của tam giác vuông này tỉ lệ với hai cạnh góc vuông của tam giác vuông kia thì hai tam giác đó đồng dạng.

  • Định lý 3: Góc của hai tam giác vuông

Nếu góc nhọn của tam giác vuông này bằng góc nhọn của tam giác vuông kia thì hai tam giác đó đồng dạng.

Cách chứng minh hai tam giác đồng dạng

Chứng minh hai tam giác đồng dạng – Hệ thức

Bài toán: Cho \(\bigtriangleup ABC (AB<AC)\), AD là đường phân giác trong. Miền ngoài \(\bigtriangleup\) vẽ tia Cx sao cho \(\widehat{BCx}=\widehat{BAD}\). Gọi I là giao điểm của Cx và AD. Chứng minh rằng:

  • a) \(\bigtriangleup ADB \sim \bigtriangleup CDI\)
  • b) \(\frac{AD}{AC}=\frac{AB}{AI}\)
  • c) AD2 = AB.AC – BD.DC

Cách giải:

phương pháp chứng minh tam giác đồng dạng

a) Xét \(\bigtriangleup ADB\) và  \(\bigtriangleup CDI\) , ta có:

\(\widehat{BCx}=\widehat{BAD}\) (gt)

\(\widehat{D_{1}}=\widehat{D_{2}}\) (đối đỉnh)

Suy ra:  \(\bigtriangleup ADB \sim \bigtriangleup CDI\)

b) Xét \(\bigtriangleup ABD\) và  \(\bigtriangleup AIC\) , ta có :

\(\widehat{B}=\widehat{I}\) (\(\bigtriangleup ADB \sim \bigtriangleup CDI\))

\(\widehat{A_{1}}=\widehat{A_{2}}\)(AD là phân giác)

Suy ra \(\bigtriangleup ABD\sim \bigtriangleup AIC\)

Suy ra \(\frac{AD}{AC}=\frac{AB}{AI}\), suy ra AD.AI = AB.AC (1)

c) Có \(\frac{AD}{CD}=\frac{BD}{BI}\) \(\bigtriangleup ADB \sim \bigtriangleup CDI\)

Suy ra: AD.DI = BD.CD (2)

từ (1) và (2) :

Suy ra: AB.AC – BD.CD = AD.AI – AD.DI = AD(AI – DI ) = AD.AD = AD2

Chứng minh hai tam giác đồng dạng – Định lí Talet và Hai đường thẳng song song

Bài toán:

Cho tam giác ABC nhọn, đường cao BD và CE. Kẻ các đường cao DF và EG của  tam giác ADE. Chứng minh:

  • a) \(\bigtriangleup ADB \sim \bigtriangleup AEG\)
  • b) AD.AE = AB.AG = AC.AF
  • c) FG // BC

Cách giải:

cách chứng minh tam giác đồng dạng qua định lý talet

a) Xét tam giác ABD và AEG, ta có :

BD AC (BD là đường cao)

EG AC (EG là đường cao)

Suy ra: BD // EG

Suy ra:  \(\bigtriangleup ADB \sim \bigtriangleup AEG\)

b) Từ a) Suy ra\(\frac{AB}{AE}=\frac{AD}{AG}\)

\(\Rightarrow\) AD.AE = AB.AG (1)

CM tương tự, ta được : AD.AE = AC.AF (2)

Từ (1) và (2) suy ra :

AD.AE = AB.AG = AC.AF

c) Xét tam giác ABC, ta có :

AB.AG = AC.AF (cmb) suy ra: \(\frac{AB}{AF}=\frac{AC}{AG}\)

Suy ra: FG // BC (định lí Talet đảo)

Chứng minh hai tam giác đồng dạng – góc tương ứng bằng nhau

Bài toán: Cho tam giác ABC có các đường cao BD và CE cắt nhau tại H. Chứng minh:

  • a) Tam giác HBE và tam giác HCE đồng dạng.
  • b)  \(\bigtriangleup HED\sim \bigtriangleup HBC\)

và \(\widehat{HDE}=\widehat{HAE}\)

Cách giải:

cách chứng minh góc tương ứng bằng nhau

a) Xét tam giác HBE và tam giác HCD, ta có :

\(\widehat{BEH}=\widehat{CDH}=90^{\circ}\) (gt)

\(\widehat{H_{1}}=\widehat{H_{2}}\) (đối đỉnh)

Suy ra:  \(\bigtriangleup HBE\sim \bigtriangleup HCD\) (g – g)

b) Xét tam giác HED và HBC, ta có :

\(\frac{HE}{HD}=\frac{HD}{HC}\) (\(\bigtriangleup HBE\sim \bigtriangleup HCD\))

Suy ra: \(\frac{HE}{HD}=\frac{HD}{HC}\)

\(\widehat{EHD}=\widehat{CHB}\)(đối đỉnh)

Suy ra \(\bigtriangleup HED\sim \bigtriangleup HBC\)(c – g – c)

Suy ra: \(\widehat{D_{1}}=\widehat{C_{1}}\)(1)

mà còn có: đường cao BD và CE cắt nhau tại H (gt)

Do đó H là trực tâm, suy ra \(AH\perp BC\) tại M.

Suy ra\(\widehat{A_{1}}+\widehat{ABC}=90^{\circ}\)

Mặt khác : \(\widehat{C_{1}}+\widehat{ABC}=90^{\circ}\)

Suy ra: \(\widehat{A_{1}}=\widehat{C_{1}}\) (2)

Từ (1) và (2) =>  \(\widehat{A_{1}}=\widehat{D_{1}}\)

hay: \(\widehat{HDE}=\widehat{HAE}\)

Trên đây là tổng hợp những kiến thức về chủ đề hai tam giác đồng dạng. Hy vọng đã cung cấp cho bạn những thông tin hữu ích phục vụ cho quá trình học tập. Chúc bạn luôn học tốt!

Xem chi tiết qua bài giảng dưới đây:

(Nguồn: www.youtube.com)

2.6/5 - (5 bình chọn) Please follow and like us:errorfb-share-icon Tweet fb-share-icon

Từ khóa » Cách Xét Hai Tam Giác đồng Dạng