Tỉ Số Lượng Giác Của Góc Nhọn - Toán Lớp 9 - Haylamdo
Có thể bạn quan tâm
Tỉ số lượng giác của góc nhọn
Với Tỉ số lượng giác của góc nhọn Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tỉ số lượng giác của góc nhọn từ đó đạt điểm cao trong bài thi môn Toán lớp 9.
A. Phương pháp giải
1. Định nghĩa các tỉ số lượng giác của góc nhọn:
1, sin α = AB/AC
2, cos α = BC/AC
3, tan α = AB/BC
4, cotg α = BC/AB
2. Một số tính chất của các tỉ số lượng giác
+ Cho hai góc α và β phụ nhau. Khi đó:
sin α = cos β
cos α = sin β
tan α = cotg β
cotg α = tan β
+ Cho góc nhọn α. Ta có:
0 < sin α < 1
0 < cos α < 1
tan α = sin α / cos α
cotg α = cos α / sin α
tan α . cotg α = 1
3. Các hệ thức về cạnh và góc trong tam giác vuông.
Cho tam giác ABC vuông tại A. Khi đó:
b= a. sin B
c= a. sin C
b= a. cos C
c= a. cos B
b= c. tan B
c= b. tan C
b= c. cotg C
c= b. cotg B
B. Bài tập tự luận
Bài 1: Cho tam giác ABC vuông tại A, BC = a, đường cao AH.
a, Chứng minh rằng: AH=a sinBcosB; BH = a cos2B ; CH = a sin2 B
b, Suy ra AB2 = BC.BH ; AH2 = BH.HC
Hướng dẫn giải
a, Chứng minh:
Xét tam giác vuông ABH, ta có:
AH = sinB.AB (1)
Xét tam giác vuông ABC, ta có:
AB = BC.cos B = acos B (2)
Từ (1) và (2) ta có:
AH = a sin B cos B
Tương tự ta có:
+ Xét tam giác vuông ABH: BH = AB.cos B
Xét tam giác vuông ABC: AB = BC.cos B = acos B => BH = a cos2B
+ Xét tam giác vuông ACH: CH = AC.cos C = AC.sin B
Tam giác vuông ABC: AC=BC.sin B=a.sin B => CH = a sin2 B
b, AB2 = a2 cos2B
BC.BH = a.a.cos2B = a2cos2B
=> AB2 = BC.BH
AH2 = a2sin2cos2B
=> AH2 = BH.HC
Bài 2: Giải tam giác trong các trường hợp sau( Làm tròn đến chữ số thập phân thứ nhất).(Tức là tìm tất cả các yếu tố chưa biết của tam giác ABC)
a, Tam giác ABC vuông tại A, biết AB = 3,5; AC = 4,2.
b, Tam giác ABC vuông tại A, biết ∠B = 50o ; AB = 3,7.
Hướng dẫn giải
Bài 3: Giải tam giác ABC, biết ∠B = 65o; ∠C = 40o và BC = 4,2 cm.
Hướng dẫn giải
Ta có: ∠A = 180o - (65o + 45o) = 75o
Vẽ BH ⊥ AC
+ Xét tam giác vuông HBC vuông tại H, theo hệ thức về cạnh và góc trong tam giác vuông, ta có:
BH = BC.sin C = 2,7 (cm)
Và CH = BH.cotg C (1)
+ Xét tam giác vuông ABH tại H, theo hệ thức về cạnh và góc trong tam giác vuông ta có:
BH = AB.sin A => AB = BH/sinA = 2,8 (cm) và AH = BH.cotg A (2)
Từ (1) và (2) ta có:
AC = AH+CH = BH.cotgA + BH.cotgC = BH(Cotg A+Cotg C)= 3,9(cm)
Vậy ∠A = 75o; AB = 2,8(cm); AC = 3,9(cm).
Từ khóa » Bài Toán Lượng Giác 9
-
Các Dạng Bài Tập Về Tỉ Số Lượng Giác Của Góc Nhọn - Toán Lớp 9
-
Bài Tập Tỉ Số Lượng Giác Của Góc Nhọn Chọn Lọc, Có Lời Giải - Toán Lớp 9
-
50 Bài Tập Về Các Bài Toán Về Tỉ Số Lượng Giác Của Góc Nhọn (có đáp ...
-
Toán 9: Tỉ Số Lượng Giác Của Góc Nhọn- Lý Thuyết Và Bài Tập
-
Cách Giải Bài Dạng: Tính Tỉ Số Lượng Giác Của Một Góc Nhọn Toán Lớp 9
-
Bài Tập Tỉ Số Lượng Giác – Hình Học 9- đầy đủ Các Dạng Toán
-
Tỷ Số Lượng Giác Của Góc Nhọn - Toán 9
-
Toán 9 - Chuyên đề: Tỷ Số Lượng Giác - TaiLieu.VN
-
Công Thức Lượng Giác Lớp 9 Hay Nhất - TopLoigiai
-
Chuyên đề Tỉ Số Lượng Giác Của Góc Nhọn, Hệ Thức Về Cạnh Và Góc ...
-
Soạn Toán 9 Bài 2: Tỉ Số Lượng Giác Của Góc Nhọn Trang 71 77
-
Ôn Tập Về Tỉ Số Lượng Giác Của Góc Nhọn
-
Toán 9 | Hình 2 : Tỉ Số Lượng Giác Của Góc Nhọn - YouTube
-
Toán 9 Chương 1 Bài 2: Tỉ Số Lượng Giác Của Góc Nhọn