Tìm đạo Hàm Của Hàm Số \(y = {x^3} - 2x\).
Có thể bạn quan tâm
- Câu hỏi:
Tìm đạo hàm của hàm số \(y = {x^3} - 2x\).
- A. \(y' = 3x - 2\)
- B. \(y' = 3{x^2} - 2\)
- C. \(y' = {x^3} - 2\)
- D. \(y' = 3{x^2} - 2x\)
Lời giải tham khảo:
Đáp án đúng: B
Ta có: \(y' = \left( {{x^3} - 2x} \right)' = 3{x^2} - 2\).
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 245082
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Nguyễn An Ninh
40 câu hỏi | 60 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hàm số \(y = {x^3} + 3{x^2} - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm M có hoành độ bằng \( - 1\)
- Trong các dãy số sau đây, dãy số nào là cấp số cộg?
- Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\), cạnh bên \(AA' = \frac{{3a}}{2}\) (tham khảo hình vẽ bên). Tính khoảng cách từ điểm \(C'\) đến mặt phẳng \(\left( {CA'B'} \right)\).
- Đạo hàm của hàm số \(y = \cot x\) là hàm số:
- Kết quả của giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - 2x + 1}}{{x - 1}}\) là:
- Hàm số \(y = f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}}\) liên tục trên:
- Các mặt bên của một khối chóp ngũ giác đều là hình gì?
- Kết quả của giới hạn \(\lim \frac{{ - 3{n^2} + 5n + 1}}{{2{n^2} - n + 3}}\) là:
- Tìm giá trị thực của tham số m để hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - x - 2}}{{x - 2}}\,\,khi\,x \ne 2}\\{m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 2}\end{array}} \right.\) liên tục tại \(x = 2\).
- Đạo hàm của hàm số \(y = {\left( {{x^3} - 2{x^2}} \right)^{2019}}\) là:
- Cho hình chóp S.ABC có SA^(ABC). Gọi H, K lần lượt là trực tâm các tam giác SBC và ABC. Mệnh đề nào sai trong các mệnh đề sau?
- Giá trị của giới hạn \(\lim \frac{{\sqrt {9{n^2} - n} - \sqrt {n + 2} }}{{3n - 2}}\) là:
- Gọi (d) là tiếp tuyến của đồ thị hàm số \(y = f(x) = - {x^3} + x\) tại điểm \(M( - 2;6).\) Hệ số góc của (d) là
- Biết rằng \(\lim \left( {\frac{{{{\left( {\sqrt 5 } \right)}^n} - {2^{n + 1}} + 1}}{{{{5.2}^n} + {{\left( {\sqrt 5 } \right)}^{n + 1}} - 3}} + \frac{{2{n^2} + 3}}{{{n^2} - 1}}} \right)\) \( = \frac{{a\sqrt 5 }}{b} + c\) với \(a,b,c \in \mathbb{Z}\). Tính giá trị của biểu thức \(S = {a^2} + {b^2} + {c^2}\).
- Kết quả của giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - \sqrt[3]{{{x^3} - {x^2}}}} \right)\) là:
- Trong các mệh đề sau, mệh đề nào sai?
- Tìm đạo hàm của hàm số \(y = 3\cos x + 1\).
- Tính \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 3x - 4}}{{\left| {x - 1} \right|}}\).
- Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt[3]{{ax + 1}} - \sqrt {1 - bx} }}{x}\,\,\,khi\,\,x \ne 0\\3a - 5b - 1\,\,\,\,khi\,\,x = 0\end{array} \right.\). Tìm điều kiện của tham số a và b để hàm số liên tục tại điểm \(x = 0\).
- Cho hàm số \(y = {\sin ^2}x\). Mệnh đề nào dưới đây đúng?
- Cho hình chóp S.ABCD có \(SA \bot \left( {ABCD} \right)\) và đáy ABCD là hình vuông. Mệnh đề nào dưới đây đúng?
- Tìm vi phân của hàm số \(y = 3{x^2} - 2x + 1\).
- Một chất điểm chuyển động theo phương trình \(S = {t^3} + 5{t^2} - 5\), trong đó \(t > 0\), t được tính bằng giây (s) và S được tính bằng mét (m). Tính vận tốc của chất điểm tại thời điểm \(t = 2\) (giây).
- Tính \(\mathop {\lim }\limits_{x \to 4} \frac{{x + 5}}{{x - 1}}\).
- Cho chóp tứ giác đều S.ABCD có AB = a và \(SB = \frac{{a\sqrt 3 }}{2}\). Tính khoảng cách từ A đến mặt phẳng (SBC).
- Cho tứ diện ABCD, gọi G là trọg tâm của tam giác BCD. Mệnh đề nào dưới đây đúng?
- Tính \(\lim \frac{{5n + 1}}{{3n + 7}}\).
- Tìm đạo hàm cấp hai của hàm số \(y = \frac{1}{{x + 2}}\).
- Cho hình lập phương ABCD.A’B’C’D’. Gọi \(\alpha \) là góc giữa hai đường thẳng A’B và CB’. Tính \(\alpha \).
- Tìm đạo hàm của hàm số \(y = {x^3} - 2x\).
- Giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - \sqrt {x + 3} }}{{x + 1}}\) bằng:
- Cho hàm số \(f\left( x \right) = \frac{{{x^2} + 2}}{{x - 2}}\) . Giá trị \(f'\left( 1 \right)\) bằng
- Giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} - 3x + 1} \right)\) bằng
- Trong bốn giới hạn sau đây, giới hạn nào bằng \(2?\)
- Cho hàm số \(y = {x^4} - 2{x^2} - 1\) có đồ thị \(\left( C \right)\). Số tiếp tuyến song song với trục hoành của đồ thị \(\left( C \right)\) là
- Hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật. Tam giác \(SAB\) là tam giác đều cạnh \(a.\) Mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt đáy. Khoảng cách giữa hai đường thẳng \(SA\) và \(BC\) bằng:
- Nếu \(f\left( x \right) = x\sin x\) thì \(f'\left( {\frac{{7\pi }}{2}} \right)\) bằng
- Giới hạn \(\mathop {\lim }\limits_{x \to 2018} \frac{{{x^2} - 2019x + 2018}}{{x - 2018}}\) bằng
- Đạo hàm của hàm số \(y = \sqrt {\sin x + 2} \) bằng
- Giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\cos 2018x - \cos 2019x}}{x}\) bằng
XEM NHANH CHƯƠNG TRÌNH LỚP 11
Toán 11
Toán 11 Kết Nối Tri Thức
Toán 11 Chân Trời Sáng Tạo
Toán 11 Cánh Diều
Giải bài tập Toán 11 KNTT
Giải bài tập Toán 11 CTST
Trắc nghiệm Toán 11
Ngữ văn 11
Ngữ Văn 11 Kết Nối Tri Thức
Ngữ Văn 11 Chân Trời Sáng Tạo
Ngữ Văn 11 Cánh Diều
Soạn Văn 11 Kết Nối Tri Thức
Soạn Văn 11 Chân Trời Sáng Tạo
Văn mẫu 11
Tiếng Anh 11
Tiếng Anh 11 Kết Nối Tri Thức
Tiếng Anh 11 Chân Trời Sáng Tạo
Tiếng Anh 11 Cánh Diều
Trắc nghiệm Tiếng Anh 11 KNTT
Trắc nghiệm Tiếng Anh 11 CTST
Tài liệu Tiếng Anh 11
Vật lý 11
Vật lý 11 Kết Nối Tri Thức
Vật Lý 11 Chân Trời Sáng Tạo
Vật lý 11 Cánh Diều
Giải bài tập Vật Lý 11 KNTT
Giải bài tập Vật Lý 11 CTST
Trắc nghiệm Vật Lý 11
Hoá học 11
Hoá học 11 Kết Nối Tri Thức
Hoá học 11 Chân Trời Sáng Tạo
Hoá Học 11 Cánh Diều
Giải bài tập Hoá 11 KNTT
Giải bài tập Hoá 11 CTST
Trắc nghiệm Hoá học 11
Sinh học 11
Sinh học 11 Kết Nối Tri Thức
Sinh Học 11 Chân Trời Sáng Tạo
Sinh Học 11 Cánh Diều
Giải bài tập Sinh học 11 KNTT
Giải bài tập Sinh học 11 CTST
Trắc nghiệm Sinh học 11
Lịch sử 11
Lịch Sử 11 Kết Nối Tri Thức
Lịch Sử 11 Chân Trời Sáng Tạo
Giải bài tập Sử 11 KNTT
Giải bài tập Sử 11 CTST
Trắc nghiệm Lịch Sử 11
Địa lý 11
Địa Lý 11 Kết Nối Tri Thức
Địa Lý 11 Chân Trời Sáng Tạo
Giải bài tập Địa 11 KNTT
Giải bài tập Địa 11 CTST
Trắc nghiệm Địa lý 11
GDKT & PL 11
GDKT & PL 11 Kết Nối Tri Thức
GDKT & PL 11 Chân Trời Sáng Tạo
Giải bài tập KTPL 11 KNTT
Giải bài tập KTPL 11 CTST
Trắc nghiệm GDKT & PL 11
Công nghệ 11
Công nghệ 11 Kết Nối Tri Thức
Công nghệ 11 Cánh Diều
Giải bài tập Công nghệ 11 KNTT
Giải bài tập Công nghệ 11 Cánh Diều
Trắc nghiệm Công nghệ 11
Tin học 11
Tin học 11 Kết Nối Tri Thức
Tin học 11 Cánh Diều
Giải bài tập Tin học 11 KNTT
Giải bài tập Tin học 11 Cánh Diều
Trắc nghiệm Tin học 11
Cộng đồng
Hỏi đáp lớp 11
Tư liệu lớp 11
Xem nhiều nhất tuần
Đề thi giữa HK2 lớp 11
Đề thi HK1 lớp 11
Đề thi giữa HK1 lớp 11
Đề thi HK2 lớp 12
Tôi yêu em - Pu-Skin
Video bồi dưỡng HSG môn Toán
Đề cương HK1 lớp 11
Công nghệ 11 Bài 16: Công nghệ chế tạo phôi
Chí Phèo
Cấp số nhân
Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ
Cấp số cộng
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » đạo Hàm Cấp Hai Của Hàm Số Y=x^3+2x
-
Tính đạo Hàm Cấp Hai Của Hàm Số Y= X^3 -6x^2 +40x +100...
-
Đạo Hàm Cấp Hai Của Hàm Số Y = X^3 - 3x^2 - 1 Là 6x - 6 - Tự Học 365
-
[LỜI GIẢI] Đạo Hàm Của Hàm Số Y=( X^3-2x^2 )^2 Bằng: - Tự Học 365
-
Tính đạo Hàm Cấp Hai Của Hàm Số Y = X^2 - Toán Học Lớp 11
-
Y = X3 -2x | Xem Lời Giải Tại QANDA
-
Đạo Hàm Cấp 2 Của Hàm Số Y=x^3+2x - Blog Của Thư
-
Đạo Hàm Của Hàm Số Y=(x^3-2x^2)^2016
-
Đạo Hàm Của Hàm Số Y = (x^3 - 2x^2)^2 Bằng
-
Hàm Số (y = (x)((x - 2)) ) Có đạo Hàm Cấp Hai Là:
-
[DOC] 50 Cau Trac Nghiem Dao cx
-
Tính đạo Hàm Cấp Hai Của Hàm Số \(y = {{x^3} - X} \) - Trắc Nghiệm ...
-
Bài 5: Đạo Hàm Cấp Hai - Tìm đáp án, Giải Bài Tập, để Học Tốt
-
Tính đạo Hàm Cấp Hai Của Hàm Số Y = X Mũ 2. Sinx Y ... - Vietjack.online