Tìm Phương Trình đường Tròn Bằng Phép Tịnh Tiến

Trong bài giảng trước thầy đã hướng dẫn chúng ta dạng toán tìm tọa độ của điểm và viết phương trình đường thẳng bằng phép tịnh tiến. Tiếp theo chuyên đề này bài giảng hôm nay thầy sẽ hướng dẫn chúng ta tìm phương trình đường tròn bằng phép tịnh tiến.

Với 3 bài tập trong bài giảng này thầy sẽ giúp chúng ta giải quyết được 3 dạng toán liên quan tới đường tròn và phép tịnh tiến, đó là:

  • Tìm phương trình đường tròn ảnh
  • Tìm vectơ tịnh tiến
  • Tìm phương trình đường tròn vật

1. Tìm phương trình đường tròn bằng phép tịnh tiến

Bài 1: Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có phương trình: $x^2+y^2-2x+4y-4=0$. Tìm ảnh của đường tròn (C) qua phép tịnh tiến theo vectơ $\vec{v}=(-2;3)$

Hướng dẫn giải:

Cách 1: Sử dụng biểu thức tọa độ tìm phương trình đường tròn

Giả sử M(x;y) là điểm bất kì thuộc đường tròn (C) và M'(x’;y’) thuộc đường tròn (C’) là ảnh của điểm M qua phép tịnh tiến theo vectơ $\vec{v}=(-2;3)$. Theo biểu thức tọa độ của phép tịnh tiến ta có:

$\left\{\begin{array}{ll}x’-x=a\\y’-y=b\end{array}\right.\Leftrightarrow \left\{\begin{array}{ll}x=x’-a\\y=y’-b\end{array}\right.\Leftrightarrow \left\{\begin{array}{ll}x=x’+2\\y=y’-3\end{array}\right.$

Thay x; y ở trên vào phương trình của đường tròn (C) ta được:

$(x’+2)^2+(y’-3)^2-2(x’+2)+4(y’-3)-4=0$

$\Leftrightarrow x’^2+y’^2+2x’-2y’-7=0$

$\Leftrightarrow (x’+1)^2+(y’-1)^2=9$

Vậy đường tròn (C’) có phương trình là: $(x’+1)^2+(y’-1)^2=9$

Cách 2: Sử dụng tính chất để tìm phương trình đường tròn

Chúng ta đã biết tính chất: Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính.

Do đó ảnh của đường tròn (C) sẽ là đường tròn (C’) có cùng bán kính với đường tròn (C). Việc chúng ta cần tiến hành tiếp theo là tìm tâm của đường tròn (C’). Tâm của (C’) lại là ảnh của tâm đường tròn (C) qua $T_{\vec{v}}$.

Đường tròn (C) có tâm là I(1;-2) và bán kính $r=3$.

Gọi (C’) là ảnh của đường tròn (C) qua phép tịnh tiến theo vectơ $\vec{v}$ và I'(x’;y’) là ảnh của tâm I qua phép tịnh tiến theo vectơ $\vec{v}$. Ta có r’=r=3

Tọa độ của điểm I’ là:

$\left\{\begin{array}{ll}x’-x=a\\y’-y=b\end{array}\right.\Leftrightarrow \left\{\begin{array}{ll}x’=x+a\\y’=y+b\end{array}\right.\Leftrightarrow \left\{\begin{array}{ll}x’=1-2\\y=-2+3\end{array}\right.\Leftrightarrow \left\{\begin{array}{ll}x’=-1\\y=1\end{array}\right.$

Vậy tọa độ của I’ là: I'(-1;1)

Đường tròn (C’) có tâm là I'(-1;1) và bán kính r=3 có phương trình là:

$(x+1)^2+(y-1)^2=9$

2. Tìm vectơ tịnh tiến khi biết phương trình đường tròn vật và ảnh

Bài 2: Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có phương trình: $(x-2)^2+(y+1)^2=16$ và đường tròn (C’) có phương trình $(x-5)^2+(y+5)^2=16$. Biết đường tròn (C’) là ảnh của đường tròn (C) qua phép tịnh tiến theo vectơ $\vec{v}$. Tìm tọa độ của vectơ $\vec{v}$.

Hướng dẫn giải

Tâm đường tròn (C) là điểm I(2;-1), tâm của đường tròn (C’) là điểm I'(5;-5).

Do đường tròn (C’) là ảnh của đường tròn (C) qua phép tịnh tiến theo vec tơ $\vec{v}$ nên I’ cũng là ảnh của I qua phép tịnh tiến theo vec tơ $\vec{v}$.

Gọi tọa độ của vectơ $\vec{v}$ là: $\vec{v}=(a;b)$

Ta có: $\left\{\begin{array}{ll}x’-x=a\\y’-y=b\end{array}\right.\Leftrightarrow \left\{\begin{array}{ll}5-2=a\\-5+1=b\end{array}\right.\Leftrightarrow \left\{\begin{array}{ll}a=3\\b=-4\end{array}\right.$

Vậy tọa độ của vectơ $\vec{v}$ là: $\vec{v}=(3;-4)$

Qua hai bài toán trên thầy đã hướng dẫn chúng ta tìm phương trình đường tròn ảnh bằng phép tịnh tiến và tìm vectơ tịnh tiến khi biết đường tròn vật và đường tròn ảnh. Trong bài toán tiếp theo ngay sau đây thầy sẽ gửi tới các bạn dạng toán tìm đường tròn vật.

3. Tìm phương trình đường tròn vật qua phép tịnh tiến

Bài 3: Trong mặt phẳng tọa độ Oxy cho đường tròn (C’) có phương trình: $(x-1)^2+(y+2)^2=1$ và vectơ $\vec{v}=(2;1)$ . Viết phương trình của đường tròn (C) biết đường tròn (C’) là ảnh của đường tròn (C) qua phép tịnh tiến theo vectơ $\vec{v}$

Hướng dẫn giải

Với bài toán này chúng ta cần tìm phương trình đường tròn vật khi đã biết phương trình đường tròn ảnh và tọa độ của vectơ tịnh tiến.

Đường tròn (C’) có bán kính là: r’=1 và tâm I'(1;-2)

Do (C’)  là đường tròn ảnh của đường tròn (C) nên ta có: $r = r’ =1$

Gọi I(x;y) là tâm của đường tròn (C), ta có:

$\left\{\begin{array}{ll}x’-x=a\\y’-y=b\end{array}\right.\Leftrightarrow \left\{\begin{array}{ll}x=x’-a\\y=y’-b\end{array}\right.\Leftrightarrow \left\{\begin{array}{ll}x=1-2\\y=-2-1\end{array}\right.\Leftrightarrow \left\{\begin{array}{ll}x=-1\\y=-3\end{array}\right.$

Vậy tâm I của đường tròn (C) là: I(-1;-3)

Đường tròn (C) cần tìm là: $(x+1)^2+(y+3)^2=1$

Trên đây là toàn bộ nội dung cho bài giảng tìm phương trình đường tròn bằng phép tịnh tiến. Thầy đã cố gắng chia thành 3 dạng bài tập như trên để giúp chúng ta dễ theo dõi cũng như hiểu rõ các dạng toán trong phần này. Hy vọng với hướng dẫn và lời giải chi tiết của 3 bài toán trên các bạn sẽ hoàn toàn làm chủ được dạng toán viết phương trình đường tròn thông qua phép tịnh tiến.

SUB ĐĂNG KÍ KÊNH GIÚP THẦY NHÉ

Từ khóa » Viết Phương Trình ảnh Của đường Tròn