Tìm Tất Cả Các Giá Trị Thực Của Tham Số M để Bất Phương Trình \(m\left( {x
Có thể bạn quan tâm
- Câu hỏi:
Tìm tất cả các giá trị thực của tham số m để bất phương trình \(m\left( {x - m} \right) \ge x - 1\) có tập nghiệm là \(\left( { - \infty ;m + 1} \right]\).
- A. m = 1
- B. m > 1
- C. m < 1
- D. \(m \ge 1.\)
Lời giải tham khảo:
Đáp án đúng: C
Bất phương trình viết lại \(\left( {m - 1} \right)x \ge {m^2} - 1\).
Xét \(m - 1 > 0 \leftrightarrow m > 1\), bất phương trình \( \Leftrightarrow x \ge \frac{{{m^2} - 1}}{{m - 1}} = m + 1 \to S = \left[ {m + 1; + \infty } \right)\).
Xét \(m - 1 < 0 \leftrightarrow m < 1\), bất phương trình \( \Leftrightarrow x \le \frac{{{m^2} - 1}}{{m - 1}} = m + 1 \to S = \left( { - \infty ;m + 1} \right]\).
Lưu ý: Đây là câu hỏi tự luận.
ATNETWORK
Mã câu hỏi: 112098
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
40 câu trắc nghiệm chuyên đề Bất phương trình và hệ bất phương trình Đại số 10
40 câu hỏi | 0 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Tập nghiệm S của bất phương trình \(5x - 1 \ge \frac{{2x}}{5} + 3\) là:
- Bất phương trình \(\frac{{3x + 5}}{2} - 1 \le \frac{{x + 2}}{3} + x\) có bao nhiêu nghiệm nguyên lớn hơn - 10?
- Tập nghiệm S của bất phương trình \(\left( {1 - \sqrt 2 } \right)x < 3 - 2\sqrt 2 \) là:
- Tổng các nghiệm nguyên của bất phương trình \(x\left( {2 - x} \right) \ge x\left( {7 - x} \right) - 6\left( {x - 1} \right)\) trên đoạn [-10;10] bằng
- Bất phương trình \(\left( {2x - 1} \right)\left( {x + 3} \right) - 3x + 1 \le \left( {x - 1} \right)\left( {x + 3} \right) + {x^2} - 5\) có tập nghiệm ?
- Tập nghiệm S của bất phương trình \(5\left( {x + 1} \right) - x\left( {7{\rm{ }} - {\rm{ }}x} \right) > - 2x\) là:
- Tập nghiệm S của bất phương trình \({\left( {x + \sqrt 3 } \right)^2} \ge {\left( {x - \sqrt 3 } \right)^2} + 2\) là:
- Tập nghiệm S của bất phương trình \({\left( {x - 1} \right)^2} + {\left( {x - 3} \right)^2} + 15 < {x^2} + {\left( {x - 4} \right)^2}\) là:
- Tập nghiệm S của bất phương trình \(x + \sqrt x < \left( {2\sqrt x + 3} \right)\left( {\sqrt x - 1} \right)\) là
- Tập nghiệm S của bất phương trình \(x + \sqrt {x - 2} \le 2 + \sqrt {x - 2} \) là:
- Tổng các nghiệm nguyên của bất phương trình \(\frac{{x - 2}}{{\sqrt {x - 4} }} \le \frac{4}{{\sqrt {x - 4} }}\) bằng:
- Tập nghiệm S của bất phương trình \(\left( {x - 3} \right)\sqrt {x - 2} \ge 0\) là:
- Bất phương trình \(\left( {m - 1} \right)x > 3\) vô nghiệm khi
- Bất phương trình \(\left( {{m^2} - 3m} \right)x + m < 2 - 2x\) vô nghiệm khi
- Có bao nhiêu giá trị thực của tham số m để bất phương trình \(\left( {{m^2} - m} \right)x < m\) vô nghiệm.
- Gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình \(\left( {{m^2} - m} \right)x + m < 6x - 2\) vô nghiệm. Tổng các phần tử trong S bằng:
- Có bao nhiêu giá trị thực của tham số m để bất phương trình \(mx - 2 \le x - m\) vô nghiệm.
- Bất phương trình \(\left( {{m^2} + 9} \right)x + 3 \ge m\left( {1 - 6x} \right)\) nghiệm đúng với mọi x khi
- Bất phương trình \(4{m^2}\left( {2x - 1} \right) \ge \left( {4{m^2} + 5m + 9} \right)x - 12m\) nghiệm đúng với mọi x khi
- Bất phương trình \({m^2}\left( {x - 1} \right) \ge 9x + 3m\) nghiệm đúng với mọi x khi
- Tìm tất cả các giá trị thực của tham số m để bất phương trình \(\left( {x + m} \right)m + x > 3x + 4\) có tập nghiệm là \(\left( { - m - 2; + \infty } \right)\).
- Tìm tất cả các giá trị thực của tham số m để bất phương trình \(m\left( {x - m} \right) \ge x - 1\) có tập nghiệm là \(\left( { - \infty ;m + 1} \right]\).
- Tìm tất cả các giá trị của tham số m để bất phương trình \(m\left( {x - 1} \right) < 2x - 3\) có nghiệm.
- Tìm tất cả các giá trị của tham số m để bất phương trình \(\left( {{m^2} + m - 6} \right)x \ge m + 1\) có nghiệm.
- Tìm tất cả các giá trị của tham số m để bất phương trình \({m^2}x - 1 < mx + m\) có nghiệm.
- Gọi S là tập nghiệm của bất phương trình \(mx + 6 < 2x + 3m\) với m < 2. Hỏi tập hợp nào sau đây là phần bù của tập S?
- Tìm giá trị thực của tham số m để bất phương trình \(m\left( {2x - 1} \right) \ge 2x + 1\) có tập nghiệm là \(\left[ {1; + \infty } \right).\)
- Tìm giá trị thực của tham số m để bất phương trình \(2x - m < 3\left( {x - 1} \right)\) có tập nghiệm là \(\left( {4; + \infty } \right).\)
- Tìm tất cả các giá trị của tham số m để bất phương trình \(mx + 4 > 0\) nghiệm đúng với mọi \(\left| x \right| < 8\).
- Tìm tất cả các giá trị thực của tham số m để bất phương trình \({m^2}\left( {x - 2} \right) - mx + x + 5 < 0\) nghiệm đúng với mọi \(x \in \left[ { - 2018;2} \right]\).
- Tìm tất cả các giá trị thực của tham số m để bất phương trình \({m^2}\left( {x - 2} \right) + m + x \ge 0\) có nghiệm \(x \in \left[ { - 1;2} \right]\)
- Tập nghiệm S của hệ bất phương trình \(\left\{ \begin{array}{l}2 - x > 0\\2x + 1 < x - 2\end{array} \right.\) là:
- Tập nghiệm S của hệ bất phương trình \(\left\{ \begin{array}{l} \frac{{2x - 1}}{3} < - x + 1\\ \frac{{4 - 3x}}{2} < 3 - x \end{array} \right.\) là:
- Tập nghiệm S của hệ bất phương trình \(\left\{ \begin{array}{l} \frac{{x - 1}}{2} < - x + 1\\ 3 + x > \frac{{5 - 2x}}{2} \end{array} \right.\) là:
- Tập nghiệm S của hệ bất phương trình \(\left\{ \begin{array}{l} 2x - 1 < - x + 2017\\ 3 + x > \frac{{2018 - 2x}}{2} \end{array} \right.\) là:
- Tập \(S = \left[ { - 1;\frac{3}{2}} \right)\) là tập nghiệm của hệ bất phương trình sau đây ?
- Tập nghiệm S của bất phương trình \(\left\{ \begin{array}{l} 2\left( {x - 1} \right) < x + 3\\ 2x \le 3\left( {x + 1} \right) \end{array} \right.\) là:
- Biết rằng bất phương trình \(\left\{ \begin{array}{l} x - 1 < 2x - 3\\ \frac{{5 - 3x}}{2} \le x - 3\\ 3x \le x + 5 \end{array} \right.\) có tập nghiệm là một đoạn [a;b]. Hỏi a + b bằng:
- Số nghiệm nguyên của hệ bất phương trình \(\left\{ \begin{array}{l} 6x + \frac{5}{7} > 4x + 7\\ \frac{{8x + 3}}{2} < 2x + 25 \end{array} \right.\) là:
- Tổng tất cả các nghiệm nguyên của bất phương trình \(\left\{ \begin{array}{l} 5x - 2 < 4x + 5\\ {x^2} < {\left( {x + 2} \right)^2} \end{array} \right.\) bằng:
XEM NHANH CHƯƠNG TRÌNH LỚP 10
Toán 10
Toán 10 Kết Nối Tri Thức
Toán 10 Chân Trời Sáng Tạo
Toán 10 Cánh Diều
Giải bài tập Toán 10 Kết Nối Tri Thức
Giải bài tập Toán 10 CTST
Giải bài tập Toán 10 Cánh Diều
Trắc nghiệm Toán 10
Ngữ văn 10
Ngữ Văn 10 Kết Nối Tri Thức
Ngữ Văn 10 Chân Trời Sáng Tạo
Ngữ Văn 10 Cánh Diều
Soạn Văn 10 Kết Nối Tri Thức
Soạn Văn 10 Chân Trời Sáng tạo
Soạn Văn 10 Cánh Diều
Văn mẫu 10
Tiếng Anh 10
Giải Tiếng Anh 10 Kết Nối Tri Thức
Giải Tiếng Anh 10 CTST
Giải Tiếng Anh 10 Cánh Diều
Trắc nghiệm Tiếng Anh 10 KNTT
Trắc nghiệm Tiếng Anh 10 CTST
Trắc nghiệm Tiếng Anh 10 CD
Giải Sách bài tập Tiếng Anh 10
Vật lý 10
Vật lý 10 Kết Nối Tri Thức
Vật lý 10 Chân Trời Sáng Tạo
Vật lý 10 Cánh Diều
Giải bài tập Lý 10 Kết Nối Tri Thức
Giải bài tập Lý 10 CTST
Giải bài tập Lý 10 Cánh Diều
Trắc nghiệm Vật Lý 10
Hoá học 10
Hóa học 10 Kết Nối Tri Thức
Hóa học 10 Chân Trời Sáng Tạo
Hóa học 10 Cánh Diều
Giải bài tập Hóa 10 Kết Nối Tri Thức
Giải bài tập Hóa 10 CTST
Giải bài tập Hóa 10 Cánh Diều
Trắc nghiệm Hóa 10
Sinh học 10
Sinh học 10 Kết Nối Tri Thức
Sinh học 10 Chân Trời Sáng Tạo
Sinh học 10 Cánh Diều
Giải bài tập Sinh 10 Kết Nối Tri Thức
Giải bài tập Sinh 10 CTST
Giải bài tập Sinh 10 Cánh Diều
Trắc nghiệm Sinh học 10
Lịch sử 10
Lịch Sử 10 Kết Nối Tri Thức
Lịch Sử 10 Chân Trời Sáng Tạo
Lịch Sử 10 Cánh Diều
Giải bài tập Lịch Sử 10 KNTT
Giải bài tập Lịch Sử 10 CTST
Giải bài tập Lịch Sử 10 Cánh Diều
Trắc nghiệm Lịch sử 10
Địa lý 10
Địa Lý 10 Kết Nối Tri Thức
Địa Lý 10 Chân Trời Sáng Tạo
Địa Lý 10 Cánh Diều
Giải bài tập Địa Lý 10 KNTT
Giải bài tập Địa Lý 10 CTST
Giải bài tập Địa Lý 10 Cánh Diều
Trắc nghiệm Địa lý 10
GDKT & PL 10
GDKT & PL 10 Kết Nối Tri Thức
GDKT & PL 10 Chân Trời Sáng Tạo
GDKT & PL 10 Cánh Diều
Giải bài tập GDKT & PL 10 KNTT
Giải bài tập GDKT & PL 10 CTST
Giải bài tập GDKT & PL 10 CD
Trắc nghiệm GDKT & PL 10
Công nghệ 10
Công nghệ 10 Kết Nối Tri Thức
Công nghệ 10 Chân Trời Sáng Tạo
Công nghệ 10 Cánh Diều
Giải bài tập Công nghệ 10 KNTT
Giải bài tập Công nghệ 10 CTST
Giải bài tập Công nghệ 10 CD
Trắc nghiệm Công nghệ 10
Tin học 10
Tin học 10 Kết Nối Tri Thức
Tin học 10 Chân Trời Sáng Tạo
Tin học 10 Cánh Diều
Giải bài tập Tin học 10 KNTT
Giải bài tập Tin học 10 CTST
Giải bài tập Tin học 10 Cánh Diều
Trắc nghiệm Tin học 10
Cộng đồng
Hỏi đáp lớp 10
Tư liệu lớp 10
Xem nhiều nhất tuần
Đề thi giữa HK1 lớp 10
Đề thi giữa HK2 lớp 10
Đề thi HK1 lớp 10
Đề thi HK2 lớp 10
Đề cương HK1 lớp 10
Video bồi dưỡng HSG môn Toán
Toán 10 Chân trời sáng tạo Bài 2: Tập hợp
Toán 10 Kết nối tri thức Bài 1: Mệnh đề
Toán 10 Cánh Diều Bài tập cuối chương 1
Soạn bài Thần Trụ Trời - Ngữ văn 10 CTST
Soạn bài Ra-ma buộc tội - Ngữ văn 10 Tập 1 Cánh Diều
Soạn bài Chữ người tử tù - Nguyễn Tuân - Ngữ văn 10 KNTT
Văn mẫu về Bình Ngô đại cáo
Văn mẫu về Chữ người tử tù
Văn mẫu về Tây Tiến
Văn mẫu về Cảm xúc mùa thu (Thu hứng)
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Cho Bpt M(x-m) =x-1
-
Cho Bất Phương Trình: M(x-m) Lớn Hơn Hoặc Bằng X-1
-
Cho Bất Phương Trình: M(x - M) ≥ X - 1. Các Giá Trị Nào Sau đây Của ...
-
Cho Bất Phương Trình: M(x-m)≥x-1 Các Giá Trị Nào Sau đây Của M Thì ...
-
Top 15 Cho Bpt M(x-m) =x-1
-
Cho Bất Phương Trình M(x-m X - 1 > 0) - MarvelVietnam
-
Giải Và Biện Luận Bất Phương Trình M(x-m) X-1
-
Giải Và Biện Luận Bất Phương Trình: M(x - Toán Học Lớp 10
-
Cho Bpt M(x-m)-x+m+6>0 Tìm M để Bpt đã Cho 1)Nghiệm đúng Với ...
-
Giải Và Biện Luận Bất Phương Trình - Tài Liệu Text - 123doc
-
Tìm Tất Cả Các Giá Trị Thực Của Tham Số (m ) để Bất Phương Trình
-
Tìm M để Bất Phương Trình Có Nghiệm
-
Tìm M để Bpt 2x2- (2m+1) X+ M2-2m+2≤ 0 Nghiệm đúng Với Mọi X ...
-
[LỜI GIẢI] Tìm M để Bất Phương Trình M^2x + 1 > ( X + 1 )m Vô Nghiệm.