Toán Tử Laplace
Có thể bạn quan tâm
- Trang Chủ
- Đăng ký
- Đăng nhập
- Upload
- Liên hệ

Trong toán học và vật lý, toán tử Laplace hay Laplacian, kí hiệu là hoặc được đặt tên theo Pierre-Simon
de Laplace, là một toán tử vi phân, dặc biệt trong các toán tử elliptic, với nhiều áp dụng. Trong vật lý, nó được sửdụng trong mô tả của quá trình truyền sóng, quá trình truyền nhiệt và tạo nên phương trình Helmholtz. Nó cũng cóvai trò quan trọng trong tĩnh điện và cơ học chất lưu, thành phần chính trong phương trình Laplace và phương trìnhPoisson. Trong cơ học lượng tử, nó đại diện cho động năng trong phương trình Schrödinger. Trong toán học, hàm sốnào mà bằng không dưới toán tử Laplace được gọi là hàm điều hòa; toán tử Laplace ở trung tâm của lý thuyết Hodgevà trong các kết quả của de Rham cohomology.
ngochoa2017
4545
0 Download Bạn đang xem tài liệu "Toán tử Laplace", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trênToán tử Laplace 1 Toán tử Laplace Trong toán học và vật lý, toán tử Laplace hay Laplacian, kí hiệu là hoặc được đặt tên theo Pierre-Simon de Laplace, là một toán tử vi phân, dặc biệt trong các toán tử elliptic, với nhiều áp dụng. Trong vật lý, nó được sử dụng trong mô tả của quá trình truyền sóng, quá trình truyền nhiệt và tạo nên phương trình Helmholtz. Nó cũng có vai trò quan trọng trong tĩnh điện và cơ học chất lưu, thành phần chính trong phương trình Laplace và phương trình Poisson. Trong cơ học lượng tử, nó đại diện cho động năng trong phương trình Schrödinger. Trong toán học, hàm số nào mà bằng không dưới toán tử Laplace được gọi là hàm điều hòa; toán tử Laplace ở trung tâm của lý thuyết Hodge và trong các kết quả của de Rham cohomology. Định nghĩa Toán tử Laplace là toán tử vi phân bậc 2 trong không gian Euclid n-chiều, định nghĩa như là div ( ) của gradient ( ). Do đó nếu f là một hàm số thực có đạo hàm bậc 2, thì Laplacian của f được định nghĩa bởi (1) Nói một cách tương đương, Laplacian của f là tổng cúa các đạo hàm riêng bậc 2 thuần túy trong tọa độ Đề các : (2) Biểu diễn trong các tọa độ khác nhau Trong hai chiều Toán tử Laplace trong không gian hai chiều được viết như là với x và y là tọa độ Cartesian trong mặt phẳng xy. Trong tọa độ cực, Trong ba chiều Trong không gian 3 chiều, người ta thường viết toán tử Laplace sử dụng nhiều hệ tọa độ khác nhau. Trong tọa độ Cartesian, Trong tọa độ trụ, Trong tọa độ cầu: Toán tử Laplace 2 ( là góc đo từ cực Bắc và là kinh độ).Biểu thức có thể được thay bằng biểu diễn tương đương . Không gian N chiều Trongtọa độ cầu trong chiều, với cách đặt tham số với và , mà là toán tử Laplace–Beltrami trên mặt cầu trong không gian (còn gọi là Laplacian cầu). Người ta cũng có thể viết một cách tương đương như là Các hằng đẳng thức • Nếu f và g là hai hàm số, thì Laplacian của tích fg sẽ là Trong trường hợp đặc biệt khi f là một hàm phụ thuộc vào bán kính và g là một hàm cầu điều hòa, . Ta thường gặp trường hợp đặc biệt này trong nhiều mô hình vật lý. Gradient của là một vectơ theo hướng bán kính và gradient của một hàm chỉ phụ thuộc vào góc là tiếp tuyến với véctơ bán kính, do đó Thêm nữa, hàm cầu điều hòa có tính chất đặc biệt là eigenfunction của toán tử Laplacian trong tọa độ cầu. Do đó, Tham khảo • Feynman, R, Leighton, R, and Sands, M (1970). "Chapter 12: Electrostatic Analogs". The Feynman Lectures on Physics. Volume 2. Addison-Wesley-Longman. • Gilbarg, D and Trudinger, N (2001). Elliptic partial differential equations of second order. Springer. ISBN 978-3540411604. • Schey, H. M. (1996). Div, grad, curl, and all that. W W Norton & Company. ISBN 978-0393969979. Liên kết ngoài • Weisstein, Eric W., "Laplacian [1]" từ MathWorld. • Derivation of the Laplacian in Spherical coordinates [2] by Swapnil Sunil Jain Chú thích [1] http:/ / mathworld. wolfram. com/ Laplacian. html [2] http:/ / planetmath. org/ ?method=l2h& from=objects& id=9376& op=getobj Nguồn và người đóng góp vào bài 3 Nguồn và người đóng góp vào bài Toán tử Laplace Nguồn: Người đóng góp: Doanmanhtung.sc, Meotrangden, QT, Tranletuhan, Volga, 3 sửa đổi vô danh Giấy phép Creative Commons Attribution-Share Alike 3.0 Unported //creativecommons.org/licenses/by-sa/3.0/ Tài liệu đính kèm:
Toan tu Laplace.pdf
Giáo án lớp 12 môn Giải tích - Tiết 34 - Bài 4: Số e và logarit tự nhiên
Lượt xem: 1192
Lượt tải: 0
Hệ thống kiến thức về Số phức
Lượt xem: 1854
Lượt tải: 0
Giáo án Giải tích 12 - GV: Đỗ Văn Bắc - Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Lượt xem: 1471
Lượt tải: 0
Giáo án lớp 12 môn Giải tích - Chương II: Hàm số luỹ thừa, hàm số mũ
Lượt xem: 1216
Lượt tải: 0
Bài tập Hệ phương trình mũ và hệ phương trình logarit
Lượt xem: 1586
Lượt tải: 0
Giáo án môn Giải tích 12 tiết 75: Số phức
Lượt xem: 1640
Lượt tải: 0
Giáo án lớp 12 môn Giải tích - Tiết 83, 84 - Ôn tập chương IV
Lượt xem: 1001
Lượt tải: 0
Đề thi thử đại học môn thi: Toán - THPT chuyên Lào Cai
Lượt xem: 1317
Lượt tải: 0
Giáo án Giải tích 12 - GV: Trần Sĩ Tùng - Tiết 25: Bài tập luỹ thừa
Lượt xem: 1141
Lượt tải: 0
Chuyên đề số 1: Khảo sát hàm số và ứng dụng
Lượt xem: 2014
Lượt tải: 0
Copyright © 2026 Lop12.net - Giáo án điện tử lớp 12, Sáng kiến kinh nghiệm hay, chia sẻ thủ thuật phần mềm
Từ khóa » Toán Tử Laplace
-
Toán Tử Laplace – Wikipedia Tiếng Việt
-
[PDF] TOÁN TỬ LAPLACE VỚI MẬT ĐỘ - CSDL Khoa Học
-
Bài 4: Toán Tử Laplace Và ứng Dụng | Môn Học - ELEARNING
-
Toán Tử Laplace – Du Học Trung Quốc 2022 - Wiki Tiếng Việt
-
Toán Tử Laplace - Wiki Là Gì
-
Giải Thích Toán Tử Laplace - Vật Lý | Narkive
-
Hàm Phức Và Toán Tử Laplace - Lib..vn
-
Toán Tử Laplace - Wikimedia Tiếng Việt
-
[PDF] 4.3 Phương Pháp Toán Tử Laplace
-
Toán Tử Laplace - Tieng Wiki
-
Định Nghĩa Toán Tử Laplace - Tieng Wiki
-
TOÁN TỬ LAPLACE: LẤY LAPLACE NGƯỢC - YouTube
-
Phương Pháp Toán Tử Laplace Docx - 123doc
-
Phương Pháp Toán Tử Laplace Docx - Tài Liệu Text - 123doc
-
Phương Pháp Toán Tử Laplace Tính Quá Trình Quá độ Mạch Tuyến Tính ...
-
Toán Tử Laplace Với Mật độ - TaiLieu.VN
-
Biến Đổi Laplace Là Gì
-
Mục Lục Liên Hợp Vietbiblio
-
Phương Pháp Toán Tử Laplace Trang 1 Tải Miễn Phí Từ TailieuXANH