Bài 3. Phép đối Xứng Trục - Củng Cố Kiến Thức

SureLRN THÔNG BÁO Bạn có 0 thông báo mới Đang tải thông báo ...
Xem tất cả
  1. Trang chủ
  2. Củng cố kiến thức
  3. Lớp 11
  4. Toán

Bài 3. Phép đối xứng trục

I. Định nghĩa

Cho đường thẳng d. Phép biến hình biến mỗi điểm M thuộc d thành chính nó, biến mỗi điểm M không thuộc d thành M’ sao cho d là đường trung trực của đoạn thẳng MM’ được gọi là phép đối xứng qua đường thẳng d hay phép đối xứng trục d.

II. Biểu thức tọa độ

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d. Với mỗi điểm $M = \left( {x;y} \right)$, gọi $M' = {D_d}\left( M \right) = \left( {x';y'} \right)$.

Nếu chọn d là trục Ox, thì:

$\left\{ \begin{array}{l} x' = x\\ y' = - y \end{array} \right.$

Nếu chọn d là trục Oy, thì:

$\left\{ \begin{array}{l} x' = - x\\ y' = y \end{array} \right.$

III. Tính chất

* Tính chất 1

Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kì.

* Tính chất 2

Phép đối xứng trục biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính.

IV. Trục đối xứng của một hình

Đường thẳng d được gọi là trục đối xứng của hình Hnếu phép đối xứng qua d biến Hthành chính nó.

Khi đó Hlà hình có trục đối xứng. Bài tập

Bạn chưa đăng nhập !

Vui lòng đăng nhập trước khi thực hiện thao tác này.

Đăng nhập Quay lại Đồng ý Đóng

Từ khóa » đối Xứng Oy