Bài 3: Phép đối Xứng Trục - Tìm đáp án, Giải Bài Tập, để Học Tốt
Có thể bạn quan tâm
1. Định nghĩa
Cho đường thẳng d. Phép biến mỗi điểm M thuộc d thành chính nó. Biến mỗi điểm M không thuộc d thành điểm M’ sao cho d là đường trung trực của MM’, được gọi là phép đối xứng qua đường thẳng d (hay là phép đối xứng trục) . Đường thẳng d gọi là trục đối xứng.
Phép đối xứng trục d thường được kí hiệu là Đd.
Nhận xét:
- Đd(M) = M' ⇒ Đd(M') = M.
- \(M \in d\) ⇒ Đd(M) = M.
2. Biểu thức tọa độ của phép đối xứng trục
a) Chọn hệ trục tọa độ Oxy sao cho đường thẳng d trùng với trục Ox
Với mỗi điểm M(x;y), gọi M’(x’;y’) là ảnh của M qua phép đối xứng trục d hay M’=Đd(M)=(x’;y’) thì:
\(\left\{ \begin{array}{l} x' = x\\ y' = - y \end{array} \right.\)
b) Chọn hệ trục tọa độ Oxy sao cho đường thẳng d trùng với trục Oy
Với mỗi điểm M(x;y), gọi M’(x’;y’) là ảnh của M qua phép đối xứng trục d hay M’=Đd(M)=(x’;y’) thì:
\(\left\{ \begin{array}{l} x' = - x\\ y' = y \end{array} \right.\)
3. Tính chất
a) Tính chất 1
Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kỳ.
b) Tính chất 2:
Phép đối xứng trục biến một đường thẳng thành một đường thẳng, biến một đoạn thẳng thành một đoạn thẳng bằng nó, biến một tam giác thành một tam giác bằng nó , biến một đường tròn thành một đường tròn có cùng bán kính.
4. Trục đối xứng của một hình
Định nghĩa:
Đường thẳng d gọi là trục đối xứng của hình H nếu phép dối xứng qua d biến hình H thành chính nó, tức là Đd(H) = H.
5. Bài tập minh họa
Ví dụ 1:
Cho điểm M(1;3). Tìm tọa đô M’ là ảnh của M qua phép đối xứng trục Oy, rồi tìm tọa độ của M’’ là ảnh của M’ qua phép đối xứng trục Ox.
Lời giải:
ĐOy(M) = M’
\( \Rightarrow \left\{ \begin{array}{l}x' = - x = - 1\\y' = y = 3\end{array} \right. \Rightarrow M'( - 1;3).\)
ĐOx(M’) = M’’
\( \Rightarrow \left\{ \begin{array}{l}x'' = x' = - 1\\y'' = - y' = - 3\end{array} \right. \Rightarrow M'( - 1; - 3).\)
Ví dụ 2:
Cho đường tròn (C): \({(x - 1)^2} + {(y - 2)^2} = 4.\) Viết phương trình đường tròn (C’) là ảnh ủa đường tròn (C) qua phép đối xứng trục Ox.
Lời giải:
Gọi I và R lần lượt là tâm và bán kính của đường tròn (C), I’ và R’ lần lượt là tâm và bán kính của đường tròn (C’).
Khi đó ta có: \(R' = R = 2\) và I’ = ĐOx(I).
I’ = ĐOx(I)\( \Rightarrow \left\{ \begin{array}{l}{x_{I'}} = {x_I} = 1\\{y_{I'}} = - {y_I} = - 2\end{array} \right.\)
Vậy phương trình đường tròn (C’) là: \({(x - 1)^2} + {(y + 2)^2} = 4.\)
Ví dụ 3:
Cho \(d:\frac{{x - 1}}{2} = \frac{{y + 2}}{3}.\) Viết phương trình đường thẳng d’ là ảnh của d qua phép đối xứng trục Oy.
Lời giải:
Gọi \(M(x,y) \in d,\) khi đó ĐOy(M) = M’\( \Rightarrow \left\{ \begin{array}{l}x' = - x\\y' = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - x'\\y = y'\end{array} \right. \)
\(\Rightarrow M( - x';y').\)
\(M \in d \Rightarrow \frac{{ - x' - 1}}{2} = \frac{{y' + 2}}{3} \)
\(\Leftrightarrow 3x' + 2y' + 7 = 0\)
Vậy phương trình của d’ là: \(3x + 2y + 7 = 0.\)
Từ khóa » đối Xứng Oy
-
Lý Thuyết Phép đối Xứng Trục | SGK Toán Lớp 11
-
Hình Học 11 Bài 3: Phép đối Xứng Trục - HOC247
-
Tìm Tọa độ điểm Bằng Phép đối Xứng Trục
-
Bài 3. Phép đối Xứng Trục - Củng Cố Kiến Thức
-
Phép Đối Xứng Trục Là Gì? Công Thức Và Bài Tập Vận Dụng
-
Phép đối Xứng Trục - Lý Thuyết Toán
-
Tìm ảnh Của Một điểm Qua Phép đối Xứng Trục Cực Hay - Toán Lớp 11
-
Phép Đối Xứng Trục
-
[PDF] PHÉP ĐỐI XỨNG TRỤC I. TÓM TẮT LÝ THUYẾT 1. Định Nghĩa
-
Tìm ảnh Của Một đường Thẳng Qua Phép đối Xứng Trục Cực Hay
-
Bài 3: Phép Đối Xứng Trục (Chương I, Hình Học Lớp 11) - HocTapHay
-
Phép đối Xứng Trục Trong Phép Dời Hình Và đồng Dạng
-
Giải Toán 11 Bài 3. Phép đối Xứng Trục
-
Trong Mặt Phẳng Tọa độ Oxy Qua Phép đối Xứng Trục Oy , điểm A(3