Bài Tập 1 Trang 43 SGK Giải Tích 12 - Hoc247

YOMEDIA NONE Trang chủ Toán 12 Chương 1: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số Bài tập 1 trang 43 SGK Giải tích 12 10 trắc nghiệm 60 bài tập SGK 398 hỏi đáp ADMICRO Lý thuyết10 Trắc nghiệm

60 BT SGK

398 FAQ

Giải bài 1 tr 43 sách GK Toán GT lớp 12

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc ba sau:

a) \(\small y = 2 + 3x - x^3\).

b) \(\small y = x^3 + 4x^2 + 4x\).

c) \(\small y = x^3 + x^2+ 9x\).

d) \(\small y = -2x^3 + 5\).

ATNETWORK Toán 12 Chương 1 Bài 5Trắc nghiệm Toán 12 Chương 1 Bài 5Giải bài tập Toán 12 Chương 1 Bài 5

Hướng dẫn giải chi tiết bài 1

Phương pháp giải:

Trước khi giải bài 1, ta cùng ôn lại các bước khảo sát sự biến thiên và vẽ đồ thị hàm số bậc 3:

- Tập xác định: \(D=\mathbb{R}.\)

- Sự biến thiên: Xét chiều biến thiên của hàm số

+ Tính đạo hàm: \(y' = 3{\rm{a}}{{\rm{x}}^{\rm{2}}}{\rm{ + 2bx + c}}\)

​​+ \(y' = 0 \Leftrightarrow 3{\rm{a}}{{\rm{x}}^{\rm{2}}}{\rm{ + 2bx + c = 0}}\) (Bấm máy tính nếu nghiệm chẵn, giải \(\Delta ;\Delta '\) nếu nghiệm lẻ - không được ghi nghiệm gần đúng).

+ Xét dấu đạo hàm y’ và suy ra chiều biến thiên của hàm số.

- Tìm cực trị

- Tìm các giới hạn tại vô cực (\(x \to \pm \infty\))

- Hàm số bậc ba nói riêng và các hàm số đa thức nói chung không có tiệm cận đứng và tiệm cận ngang.

- Lập bảng biến thiên: Thể hiện đầy đủ và chính xác các giá trị trên bảng biến thiên.

- Đồ thị:

+ Tính đối xứng: Đồ thị hàm số bậc ba nhận điểm \(I(x_0,f(x_0))\) với \(x_0\) là nghiệm phương trình \(f''(x_0)=0\) làm tâm đối xứng.

+ Giao của đồ thị với trục Oy: x=0 =>y=d => (0; d)

+ Giao của đồ thị với trục Ox: \(y = 0 \Leftrightarrow {\rm{a}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + cx + d}} = 0 \Leftrightarrow x = ?\)

+ Các điểm CĐ; CT (nếu có).

+ Lấy thêm một số điểm (nếu cần), điều này làm sau khi hình dung hình dạng của đồ thị. Thiếu bên nào học sinh lấy điểm phía bên đó, không lấy tùy tiện mất thời gian.

Trong thực tế, khi giải bài tập để thuận lợi cho việc tính toán ta thường tính giới hạn, lập bảng biến thiên rồi mới suy ra cực trị của hàm số.

Lời giải:

Áp dụng ta tiến hành giải câu a, b, c, d bài 1 như sau:

Câu a:

Xét hàm số y = 2 + 3x - x3

Tập xác định: \(D=\mathbb{R}.\)

Giới hạn: \(\mathop {\lim }\limits_{x \to - \infty } y = + \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = - \infty\)

Sự biến thiên:

Đạo hàm: y' = 3 - 3x2 .

Ta có: y' = 0 ⇔ x = ± 1 .

Bảng biến thiên:

Vậy hàm số đồng biến trên các khoảng (-1;1), nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right).\)

Cực trị: Hàm số đạt cực đại tại x = 1, giá trị cực đại yCĐ = y(1) = 4, đạt cực tiểu tại x = -1 và yCT = y(-1) = 0.

Đồ thị:

Ta có: y'' = -6x; y'' = 0 ⇔ x = 0. Với x = 0 ta có y = 2. Vậy đồ thị hàm số nhận điểm I(0;2) làm tâm đối xứng.

Đồ thị cắt trục Ox tại các điểm (2;0) và (-1;0), cắt Oy tại điểm (0;2).

Đồ thị hàm số nhận điểm (0;2) làm điểm uốn.

Nhận thấy, nhánh bên trái vẫn còn thiếu một điểm để vẽ đồ thị, dựa vào tính đối xứng ta chọn điểm của hoành độ x = -2 suy ra y = 4.Đồ thị câu a bài 1 trang 43 SGK Giải tích lớp 12

Câu b:

Xét hàm số y = x3 + 4x2 + 4x

Tập xác định: \(D=\mathbb{R}.\)

Giới hạn: \(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = + \infty\).

Sự biến thiên:

Đạo hàm: y' = 3x2 + 8x + 4.

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 2\\ x = - \frac{2}{3} \end{array} \right.\)

Bảng biến thiên:

Bảng biến thiên câu b bài 1 trang 43 SGK Giải tích lớp 12

Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - \frac{2}{3}; + \infty } \right)\) và nghịch biến trên \(\left( { - 2; - \frac{2}{3}} \right).\)

Cực trị:

Hàm số đạt cực đại tại x=-2, giá trị cực đại ycđ = y(-2) = 0.

Hàm số đạt cực tiểu tại \(x=-\frac{2}{3}\), giá trị cực tiểu \(y_{ct}=y\left ( -\frac{2}{3} \right )=-\frac{32}{27}.\)

Đồ thị hàm số:

Tâm đối xứng của đồ thị hàm số: \(y''=6x+8;\)\(y''=0\Leftrightarrow x=-\frac{4}{3}\Rightarrow y=-\frac{16}{27}.\)

Đồ thị hàm số cắt trục Oy tại điểm (0;0), cắt trục Ox tại điểm có hoành độ là nghiệm của phương trình: x3 + 4x2 + 4x = 0 ⇔ x = 0 hoặc x = -2 nên tọa độ các giao điểm là (0;0) và (-2;0).

Đồ thị câu b bài 1 trang 43 SGK Giải tích lớp 12

Câu c:

Xét hàm số \(\small y = x^3 + x^2+ 9x\)

Tập xác định: \(D=\mathbb{R}.\)

Giới hạn: \(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = + \infty\).

Sự biến thiên:

Đạo hàm: y' = 3x2 + 2x + 9 > 0, ∀x.

Vậy hàm số luôn đồng biến trên \(\mathbb{R}\) và không có cực trị.

Bảng biến thiên :

Đồ thị:

Đồ thị hàm số cắt trục Ox tại điểm (0;0), cắt trục Oy tại điểm (0;0).

Đồ thị hàm số có tâm đối xứng là điểm có hoành độ là nghiệm của phương trình y'' = 0 ⇔ 6x+2 = 0 ⇔ \(x=-\frac{1}{3}.\) Suy ra tọa độ tâm đối xứng là: \(I\left ( -\frac{1}{3};-\frac{79}{27} \right ).\)

Lúc này ta vẫn chưa có đủ điểm để vẽ đồ thị hàm số, ta cần lấy thêm hai điểm có hoành độ cách đều hoành độ \(x_1\) và \(x_2\) sao cho \(\left| {{x_1} - \left( { - \frac{1}{3}} \right)} \right| = \left| {{x_2} - \left( { - \frac{1}{3}} \right)} \right|\), khi đó hai điểm này sẽ đối xứng nhau qua điểm uốn. Ta chọn các điểm (-1;-9) và \(\left ( \frac{1}{2};\frac{39}{8} \right ).\)

Đồ thị câu c bài 1 trang 43 SGK Giải tích lớp 12

Câu d:

Xét hàm số y=-2x3+5

Tập xác định:\(D=\mathbb{R}.\)

Giới hạn: \(\mathop {\lim }\limits_{x \to - \infty } y = + \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = - \infty\)

Sự biến thiên:

Đạo hàm: y' = -6x2 ≤ 0, ∀x.

Bảng biến thiên:

Bảng biến thiên câu d bài 1 trang 43 SGK Giải tích lớp 12

Vậy hàm số luôn nghịch biến trên R.

Hàm số không có cực trị.

Đồ thị:

Tính đối xứng: y'' = -12x; y'' = 0 ⇔ x = 0. Vậy đồ thị hàm số nhận điểm uốn I(0;5) làm tâm đối xứng.

Đồ thị hàm số cắt trục Oy tại điểm (0;5), đồ thị cắt trục Ox tại điểm \(\left( {\sqrt[3]{{\frac{5}{2}}};0} \right).\)

Đồ thị câu d bài 1 trang 43 SGK Giải tích lớp 12

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1 trang 43 SGK Giải tích 12 HAY thì click chia sẻ YOMEDIA
  • Jeong Taeil Zễ Thương

    Cho hàm số y=(m-1)x+m+2. Vẽ đồ thị hàm số khi m=2 tìm giá trị của m để đồ thị hàm số đi qua điểmA (2;-1)

    bởi Jeong Taeil Zễ Thương 16/11/2022

    Cho hàm số y=(m-1)x+m+2

    Vẽ đồ thị hàm số khi m=2

    tìm giá trị của m để đồ thị hàm số đi qua điểmA (2;-1)

    Theo dõi (0) 0 Trả lời
  • Thành Lâm

    Khảo sát và vẽ đồ thị hàm số (y = {x^4} - 2{x^2} - 2)

    bởi Thành Lâm 01/11/2022

    Khảo sát và vẽ đồ thị hàm số y=x^4-2x^2-2 Theo dõi (0) 0 Trả lời
  • Cẩm Tú

    Tìm m để ĐTHS y=x³-2x² +(1-m)x + m cắt Ox tại 3 điểm pb vó hoành độ đều lớn hơn 1/2.

    bởi Cẩm Tú 30/10/2022

    Mn giải giúp mình với mai mình ktra òi:(( Theo dõi (0) 0 Trả lời
  • truc lam

    Cho hàm số sau: \(y = {{mx - 1} \over {x - m}},m \ne \pm 1\) Gọi \(\left( {{H_m}} \right)\) là đồ thị của hàm số đã cho. Chứng minh rằng với mọi \(m \ne \pm 1\), đường cong \(\left( {{H_m}} \right)\) luôn đi qua hai điểm cố định A và B.

    bởi truc lam 26/10/2022

    Theo dõi (0) 1 Trả lời
  • Thanh Truc

    Chứng minh có hai tiếp tuyến chung của parabol \(y = {x^2} - 3x\) đi qua điểm \(A\left( {{3 \over 2}; - {5 \over 2}} \right)\) và chúng vuông góc với nhau.

    bởi Thanh Truc 26/10/2022

    Theo dõi (0) 1 Trả lời
  • Bảo Anh

    Chứng minh rằng parabol (P) có phương trình sau \(y = {x^2} - 3x - 1\). Tiếp xúc với đồ thị (C) của hàm số \(y = {{ - {x^2} + 2x - 3} \over {x - 1}}\). Viết phương trình tiếp tuyến tuyến chung của parabol (P) và đường cong (C) tại tiếp điểm của chúng.

    bởi Bảo Anh 26/10/2022

    Theo dõi (0) 1 Trả lời
  • Long lanh

    Chứng minh rằng các đồ thị của ba hàm số sau \(f(x) = {x^2} - 3x + 4,g(x) = 1 + {1 \over x}\) và \(h(x) = - 4x + 6\sqrt x \) tiếp xúc với nhau tại một điểm.

    bởi Long lanh 25/10/2022

    Theo dõi (0) 1 Trả lời
Toán 12 Chương 1 Bài 5Trắc nghiệm Toán 12 Chương 1 Bài 5Giải bài tập Toán 12 Chương 1 Bài 5

Bài tập SGK khác

Bài tập 2 trang 43 SGK Giải tích 12

Bài tập 3 trang 43 SGK Giải tích 12

Bài tập 4 trang 43 SGK Giải tích 12

Bài tập 5 trang 44 SGK Giải tích 12

Bài tập 6 trang 44 SGK Giải tích 12

Bài tập 7 trang 44 SGK Giải tích 12

Bài tập 8 trang 44 SGK Giải tích 12

Bài tập 9 trang 44 SGK Giải tích 12

Bài tập 1.56 trang 36 SBT Toán 12

Bài tập 1.57 trang 36 SBT Toán 12

Bài tập 1.58 trang 36 SBT Toán 12

Bài tập 1.59 trang 36 SBT Toán 12

Bài tập 1.60 trang 36 SBT Toán 12

Bài tập 1.61 trang 36 SBT Toán 12

Bài tập 1.62 trang 37 SBT Toán 12

Bài tập 1.63 trang 37 SBT Toán 12

Bài tập 1.64 trang 37 SBT Toán 12

Bài tập 1.65 trang 37 SBT Toán 12

Bài tập 1.66 trang 38 SBT Toán 12

Bài tập 1.67 trang 38 SBT Toán 12

Bài tập 1.68 trang 38 SBT Toán 12

Bài tập 1.69 trang 38 SBT Toán 12

Bài tập 1.70 trang 38 SBT Toán 12

Bài tập 1.71 trang 39 SBT Toán 12

Bài tập 1.72 trang 39 SBT Toán 12

Bài tập 1.73 trang 39 SBT Toán 12

Bài tập 1.74 trang 39 SBT Toán 12

Bài tập 29 trang 27 SGK Toán 12 NC

Bài tập 30 trang 27 SGK Toán 12 NC

Bài tập 31 trang 27 SGK Toán 12 NC

Bài tập 32 trang 28 SGK Toán 12 NC

Bài tập 33 trang 28 SGK Toán 12 NC

Bài tập 40 trang 43 SGK Toán 12 NC

Bài tập 41 trang 44 SGK Toán 12 NC

Bài tập 42 trang 45 SGK Toán 12 NC

Bài tập 43 trang 44 SGK Toán 12 NC

Bài tập 44 trang 44 SGK Toán 12 NC

Bài tập 45 trang 44 SGK Toán 12 NC

Bài tập 46 trang 44 SGK Toán 12 NC

Bài tập 47 trang 45 SGK Toán 12 NC

Bài tập 48 trang 45 SGK Toán 12 NC

Bài tập 49 trang 49 SGK Toán 12 NC

Bài tập 50 trang 49 SGK Toán 12 NC

Bài tập 51 trang 49 SGK Toán 12 NC

Bài tập 52 trang 50 SGK Toán 12 NC

Bài tập 53 trang 50 SGK Toán 12 NC

Bài tập 54 trang 50 SGK Toán 12 NC

Bài tập 55 trang 50 SGK Toán 12 NC

Bài tập 56 trang 50 SGK Toán 12 NC

Bài tập 57 trang 55 SGK Toán 12 NC

Bài tập 58 trang 56 SGK Toán 12 NC

Bài tập 59 trang 56 SGK Toán 12 NC

Bài tập 60 trang 56 SGK Toán 12 NC

Bài tập 61 trang 56 SGK Toán 12 NC

Bài tập 62 trang 57 SGK Toán 12 NC

Bài tập 63 trang 57 SGK Toán 12 NC

Bài tập 64 trang 57 SGK Toán 12 NC

Bài tập 65 trang 58 SGK Toán 12 NC

Bài tập 66 trang 58 SGK Toán 12 NC

ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Giải tích 12 Chương 3

Đề thi giữa HK1 môn Toán 12

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn bài Người lái đò sông Đà

Đề thi giữa HK1 môn Ngữ Văn 12

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 7 Lớp 12 Economic Reforms

Tiếng Anh 12 mới Review 1

Đề thi giữa HK1 môn Tiếng Anh 12

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Vật lý 12 Chương 3

Đề thi giữa HK1 môn Vật Lý 12

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Hoá Học 12 Chương 4

Đề thi giữa HK1 môn Hóa 12

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 5

Đề thi giữa HK1 môn Sinh 12

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 2 Lịch Sử VN

Đề thi giữa HK1 môn Lịch Sử 12

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

Đề thi giữa HK1 môn Địa lý 12

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Đề thi giữa HK1 môn GDCD 12

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Đề thi giữa HK1 môn Công nghệ 12

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Đề thi giữa HK1 môn Tin học 12

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Hóa

Tây Tiến

Ai đã đặt tên cho dòng sông

Sóng- Xuân Quỳnh

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Quá trình văn học và phong cách văn học

Đất Nước- Nguyễn Khoa Điềm

Đàn ghi ta của Lor-ca

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Giải Bài Tập Sgk Giải Tích 12 Trang 43