Bài Tập 3 Trang 43 SGK Giải Tích 12 - Hoc247
Có thể bạn quan tâm
60 BT SGK
398 FAQGiải bài 3 tr 43 sách GK Toán GT lớp 12
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số phân thức:
a) \(y=\frac{x+3}{x-1}\).
b) \(y=\frac{1-2x}{2x-4}\).
c) \(y=\frac{-x+2}{2x+1}\).
ATNETWORK Toán 12 Chương 1 Bài 5Trắc nghiệm Toán 12 Chương 1 Bài 5Giải bài tập Toán 12 Chương 1 Bài 5Hướng dẫn giải chi tiết bài 3
Phương pháp giải:
Xét hàm số phân thức: \(y = \frac{{ax + b}}{{cx + d}}\;(c \ne 0,\;ad - bc \ne 0)\)
- Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{{ - d}}{c}} \right\}.\)
- Sự biến thiên
+ Tính đạo hàm \(y' = \left( {\frac{{ax + b}}{{cx + d}}} \right)' = \frac{{a{\rm{d - bc}}}}{{{{{\rm{(cx + d)}}}^{\rm{2}}}}}\).
+ y’ không xác định khi \(x = \frac{{ - d}}{c}\); y’ luôn âm (hoặc dương) với mọi \(x \ne \frac{{ - d}}{c}\)
+ Hàm số đồng biến (nghịch biến) trên các khoảng \(( - \infty ; - \frac{d}{c})\) và \((-\frac{d}{c}; + \infty )\)
+ Cực trị: Hàm số không có cực trị.
- Tiệm cận:
+ \(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{{\rm{ax + b}}}}{{{\rm{cx + d}}}} = \frac{a}{c}\) nên đường thẳng \(y = \frac{a}{c}\) là tiệm cận ngang.
+ \(\mathop {\lim }\limits_{x \to {{\frac{{ - d}}{c}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{{ - d}}{c}}^ - }} \frac{{{\rm{ax + b}}}}{{{\rm{cx + d}}}} = ( \pm )\infty\) ;
\(\mathop {\lim }\limits_{x \to {{\frac{{ - d}}{c}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{{ - d}}{c}}^ + }} \frac{{{\rm{ax + b}}}}{{{\rm{cx + d}}}} = ( \pm )\infty\) nên đường thẳng \(x = \frac{{ - d}}{c}\) là tiệm cận đứng.
- Lập bảng biến thiên: Thể hiện đầy đủ và chính xác các giá trị trên bảng biến thiên.
- Đồ thị:
+ Giao của đồ thị với trục Oy: x = 0 ⇒ y = \(\frac{b}{d}\) => (0; \(\frac{b}{d}\)).
+ Giao của đồ thị với trục Ox: \(y = 0 \Leftrightarrow \frac{{{\rm{ax + b}}}}{{{\rm{cx + d}}}} = 0 \Rightarrow ax + b = 0 \)
\(\Leftrightarrow x = \frac{{ - b}}{a} \Rightarrow (\frac{{ - b}}{a};0)\).
+ Lấy thêm một số điểm (nếu cần) - điều này làm sau khi hình dung hình dạng của đồ thị. Thiếu bên nào học sinh lấy điểm phía bên đó, không lấy tùy tiện mất thời gian.)
+ Nhận xét về đặc trưng của đồ thị. Đồ thị nhận điểm \(I(\frac{{ - d}}{c};\frac{a}{c})\) là giao hai đường tiệm cận làm tâm đối xứng.
Lời giải:
Vận dụng các bước trên ta giải các câu a, b, c bài 3 như sau:
Câu a:
Xét hàm số \(y=\frac{x+3}{x-1}\)
Tập xác định:\(D =\mathbb{R} \backslash \left\{ 1 \right\}\).
Đạo hàm: \(\small y' = {{ - 4} \over {{{(x - 1)}^2}}} < 0,\forall x \ne 1\).
Tiệm cận:
\(\small \mathop {\lim y}\limits_{x \to {1^ - }} = - \infty ;\mathop {\lim y}\limits_{x \to {1^ + }} = + \infty\)
nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
\(\small \mathop {\lim y}\limits_{x \to + \infty } = 1;\mathop {\lim y}\limits_{x \to - \infty } = 1\)
nên đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Bảng biến thiên:
Vậy hàm số nghịch biến trên các khoảng \(\small \left( { - \infty ;1} \right)\) và \(\small \left( {1; + \infty } \right).\)
Hàm số không có cực trị.
Đồ thị hàm số:
Đồ thị hàm số nhận điểm I(1;1) là giao điểm của hai đường tiệm cận làm tâm đối xứng.
Đồ thị hàm số cắt trục Ox tại điểm (-3;0), cắt Oy tại điểm (0;-3).
Nhận xét: vẫn chưa đủ điểm để vẽ đồ thị hàm số nên ta tiến hành lấy thêm 2 điểm đối xứng với (-3;0) và (0;-3) qua I(1;1) là các điểm (2;5) và (3;3).
Vậy ta có đồ thị hàm số:
Câu b:
Xét hàm số \(y=\frac{1-2x}{2x-4}\)
Tập xác định: \(D =\mathbb{R} \backslash \left\{ 2 \right\}\).
Đạo hàm: \(\small y' = {6 \over {{{\left( {2{\rm{x}} - 4} \right)}^2}}} > 0,\forall x \ne 2.\)
Tiệm cận:
\(\small \mathop {\lim y}\limits_{x \to {2^ - }} = + \infty ;\mathop {\lim y}\limits_{x \to {2^ + }} = - \infty\)
nên đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
\(\small \mathop {\lim y}\limits_{x \to + \infty } = -1;\mathop {\lim y}\limits_{x \to - \infty } = -1\)
nên đường thẳng y =- 1 là tiệm cận ngang của đồ thị hàm số.
Bảng biến thiên:
Hàm số đồng biến trên khoảng \(\small \left( { - \infty ;2} \right)\) và \(\small \left( {2; + \infty } \right)\).
Hàm số không có cực trị.
Đồ thị hàm số:
Đồ thị hàm số nhận điểm I(2;-1) làm tâm đối xứng.
Đồ thị hàm số cắt trục Ox tại \(\small \left ( \frac{1}{2};0 \right );\) cắt trục Oy tại \(\small \left (0;-\frac{1}{4} \right );\)
Ta lấy thêm một điểm thuộc nhánh còn lại để vẽ đồ thị hàm số: với x=3 suy ra \(\small y=\frac{5}{2}.\)
Đồ thị hàm số:
Câu c:
Xét hàm số \(y=\frac{-x+2}{2x+1}\)
Tập xác định: \(D =\mathbb{R} \backslash \left\{ -\frac{1}{2} \right\}\).
Đạo hàm: \(\small y' = {{ - 5} \over {{{\left( {2{\rm{x}} + 1} \right)}^2}}} < 0,\forall x \ne - {1 \over 2}\).
Tiệm cận:
\(\mathop {\lim y}\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ - }} = - \infty ;\mathop {\lim y}\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ - }} = + \infty\)
nên đường thẳng \(x=-\frac{1}{2}\) là tiệm cận đứng của đồ thị hàm số.
\(\small \mathop {\lim y}\limits_{x \to + \infty } = - \frac{1}{2};\mathop {\lim y}\limits_{x \to - \infty } = - \frac{1}{2}\) nên đường thẳng \(y=-\frac{1}{2}\)
là tiệm cận ngang của đồ thị hàm số.
Bảng biến thiên:
Hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - \frac{1}{2}} \right)\) và \(\left( { - \frac{1}{2}; + \infty } \right).\)
Hàm số không có cực trị.
Đồ thị:
Đồ thị hàm số nhận điểm \(I\left( { - \frac{1}{2}; -\frac{1}{2}} \right)\) làm tâm đối xứng.
Đồ thị hàm số cắt trục Ox tại điểm (2;0), cắt trục Oy tại điểm (0;). Ta lấy điểm (-1;-3) thuộc nhánh còn lại để thuận lợi hơn cho việc vễ đồ thị.
-- Mod Toán 12 HỌC247
Nếu bạn thấy hướng dẫn giải Bài tập 3 trang 43 SGK Giải tích 12 HAY thì click chia sẻ YOMEDIA-
Xác định giao điểm của đồ thị hàm số \(y = \dfrac{{2x + 1}}{{2x - 1}}\) với đường thẳng \(y = x + 2\).
bởi Lê Thánh Tông 26/09/2022
Theo dõi (0) 1 Trả lời -
Cho biết phương trình tiếp tuyến của đồ thị hàm số sau \(y = {x^4} - 2{x^2} - 3\) song song với đường thẳng \(y = 24x - 1\)
bởi thuy linh 25/09/2022
Theo dõi (0) 1 Trả lời -
Cho biết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^4}-2{x^2}\) tại điểm có hoành độ \(x = - 2\) là:
bởi My Le 25/09/2022
Theo dõi (0) 1 Trả lời -
Thực hiện xác định giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3\left( {m - 1} \right){x^2} - 3\left( {m + 1} \right)x - 5\) có cực trị.
bởi Lê Tấn Thanh 25/09/2022
Theo dõi (0) 1 Trả lời -
Hàm số sau \(y = {x^4} + \left( {{m^2} - 4} \right){x^2} + 5\) có ba cực trị khi nào?
bởi Hồng Hạnh 25/09/2022
Theo dõi (0) 1 Trả lời -
Hàm số \(y = {x^3} + \left( {m + 3} \right){x^2} + mx - 2\) đạt cực tiểu tại \(x = 1\) khi nào?
bởi Nguyễn Trọng Nhân 25/09/2022
Theo dõi (0) 1 Trả lời -
Cho biết hàm số: \(y = \dfrac{{4 - x}}{{2x + 3m}}\). Xét tính đơn điệu của hàm số đã cho.
bởi Đan Nguyên 25/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 1 trang 43 SGK Giải tích 12
Bài tập 2 trang 43 SGK Giải tích 12
Bài tập 4 trang 43 SGK Giải tích 12
Bài tập 5 trang 44 SGK Giải tích 12
Bài tập 6 trang 44 SGK Giải tích 12
Bài tập 7 trang 44 SGK Giải tích 12
Bài tập 8 trang 44 SGK Giải tích 12
Bài tập 9 trang 44 SGK Giải tích 12
Bài tập 1.56 trang 36 SBT Toán 12
Bài tập 1.57 trang 36 SBT Toán 12
Bài tập 1.58 trang 36 SBT Toán 12
Bài tập 1.59 trang 36 SBT Toán 12
Bài tập 1.60 trang 36 SBT Toán 12
Bài tập 1.61 trang 36 SBT Toán 12
Bài tập 1.62 trang 37 SBT Toán 12
Bài tập 1.63 trang 37 SBT Toán 12
Bài tập 1.64 trang 37 SBT Toán 12
Bài tập 1.65 trang 37 SBT Toán 12
Bài tập 1.66 trang 38 SBT Toán 12
Bài tập 1.67 trang 38 SBT Toán 12
Bài tập 1.68 trang 38 SBT Toán 12
Bài tập 1.69 trang 38 SBT Toán 12
Bài tập 1.70 trang 38 SBT Toán 12
Bài tập 1.71 trang 39 SBT Toán 12
Bài tập 1.72 trang 39 SBT Toán 12
Bài tập 1.73 trang 39 SBT Toán 12
Bài tập 1.74 trang 39 SBT Toán 12
Bài tập 29 trang 27 SGK Toán 12 NC
Bài tập 30 trang 27 SGK Toán 12 NC
Bài tập 31 trang 27 SGK Toán 12 NC
Bài tập 32 trang 28 SGK Toán 12 NC
Bài tập 33 trang 28 SGK Toán 12 NC
Bài tập 40 trang 43 SGK Toán 12 NC
Bài tập 41 trang 44 SGK Toán 12 NC
Bài tập 42 trang 45 SGK Toán 12 NC
Bài tập 43 trang 44 SGK Toán 12 NC
Bài tập 44 trang 44 SGK Toán 12 NC
Bài tập 45 trang 44 SGK Toán 12 NC
Bài tập 46 trang 44 SGK Toán 12 NC
Bài tập 47 trang 45 SGK Toán 12 NC
Bài tập 48 trang 45 SGK Toán 12 NC
Bài tập 49 trang 49 SGK Toán 12 NC
Bài tập 50 trang 49 SGK Toán 12 NC
Bài tập 51 trang 49 SGK Toán 12 NC
Bài tập 52 trang 50 SGK Toán 12 NC
Bài tập 53 trang 50 SGK Toán 12 NC
Bài tập 54 trang 50 SGK Toán 12 NC
Bài tập 55 trang 50 SGK Toán 12 NC
Bài tập 56 trang 50 SGK Toán 12 NC
Bài tập 57 trang 55 SGK Toán 12 NC
Bài tập 58 trang 56 SGK Toán 12 NC
Bài tập 59 trang 56 SGK Toán 12 NC
Bài tập 60 trang 56 SGK Toán 12 NC
Bài tập 61 trang 56 SGK Toán 12 NC
Bài tập 62 trang 57 SGK Toán 12 NC
Bài tập 63 trang 57 SGK Toán 12 NC
Bài tập 64 trang 57 SGK Toán 12 NC
Bài tập 65 trang 58 SGK Toán 12 NC
Bài tập 66 trang 58 SGK Toán 12 NC
ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORKXEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Giải tích 12 Chương 3
Đề thi giữa HK1 môn Toán 12
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn bài Người lái đò sông Đà
Đề thi giữa HK1 môn Ngữ Văn 12
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 7 Lớp 12 Economic Reforms
Tiếng Anh 12 mới Review 1
Đề thi giữa HK1 môn Tiếng Anh 12
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Vật lý 12 Chương 3
Đề thi giữa HK1 môn Vật Lý 12
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Hoá Học 12 Chương 4
Đề thi giữa HK1 môn Hóa 12
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 5
Đề thi giữa HK1 môn Sinh 12
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Đề thi giữa HK1 môn Lịch Sử 12
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
Đề thi giữa HK1 môn Địa lý 12
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Đề thi giữa HK1 môn GDCD 12
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Đề thi giữa HK1 môn Công nghệ 12
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Đề thi giữa HK1 môn Tin học 12
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG Tiếng Anh
Quá trình văn học và phong cách văn học
Sóng- Xuân Quỳnh
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Ai đã đặt tên cho dòng sông
Tây Tiến
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Giải Bài Tập Sgk Giải Tích 12 Trang 43
-
Giải Bài 1 Trang 43 Sgk Giải Tích 12
-
Giải Bài 2 Trang 43 Sgk Giải Tích 12
-
Giải Bài 1 Trang 43 SGK Giải Tích 12
-
Giải Bài 1, 2, 3 Trang 43 SGK Giải Tích 12
-
Giải Toán 12 Trang 43, 44 - Thủ Thuật
-
Bài 1,2,3 Trang 43 SGK Giải Tích Lớp 12 (Khảo Sát Sự Biến Thiên Và Vẽ ...
-
Giải Bài 1 Trang 43 – SGK Môn Giải Tích Lớp 12 - Chữa Bài Tập
-
Giải Tích 12: Bài Tập 1 Trang 43 | Học Cùng
-
Bài Tập 1 Trang 43 SGK Giải Tích 12 - Hoc247
-
Bài Tập 3a Trang 43 Sgk Giải Tích 12 (Bài 5 – Toán 12 – Khảo Sát Sự ...
-
Hướng Dẫn Giải Bài 1 2 3 4 5 6 7 8 9 Trang 43 44 45 Sgk Giải Tích 12
-
Bài 3 Trang 43 SGK Giải Tích 12 - Môn Toán - Tìm đáp án, Giải Bài Tập,
-
Bài 2 Trang 43 SGK Giải Tích 12
-
Khảo Sát Sự Biến Thiên Và Vẽ đồ Thị Các Hàm Số Phân Thức - Haylamdo