Cho Hình Lăng Trụ đứng ABCD.A'B'C'D' Có đáy ABCD Là Hình Thoi ...

Loga.vn
  • Khóa học
  • Trắc nghiệm
  • Bài viết
  • Hỏi đáp
  • Giải BT
  • Tài liệu
  • Games
  • Đăng nhập / Đăng ký
Loga.vn
  • Khóa học
  • Đề thi
  • Phòng thi trực tuyến
  • Đề tạo tự động
  • Bài viết
  • Câu hỏi
  • Hỏi đáp
  • Giải bài tập
  • Tài liệu
  • Games
  • Nạp thẻ
  • Đăng nhập / Đăng ký
user-avatar Gianghoai 6 năm trước

Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, \(\widehat{BAD}=45^{\circ},AA'=\frac{a\sqrt{2-\sqrt{2}}}{2},\) O và O' là tâm của ABCD và A'B'C'D'. Tính theo a.

a) Thể tích của khối lăng trụ ABCD.A'B'C'D';

b) Khoảng cách từ C đến mặt phẳng (A'BD), và khoảng cách giữa hai đường thẳng AO' và B'O.

Loga Toán lớp 12 0 lượt thích 3677 xem 1 trả lời Thích Trả lời Chia sẻ user-avatar Hieubeodepzai

a) Ta có: \(S_{ABCD}=2S_{ABD}\)

\(S_{ABCD}=\frac{1}{2}AB.AD.\sin \widehat{BAD}=\frac{a^{2}}{2\sqrt{2}}\)

Do ABCD.A'B'C'D' là hình lăng trụ đứng nên \(V_{ABCD.A'B'C'D'}=AA'.S_{ABCD}=\frac{a\sqrt{2-\sqrt{2}}}{2}.\frac{a^{2}}{\sqrt{2}}=\frac{a^{3}\sqrt{\sqrt{2}-1}}{2}\)

b) Ta có \(O\in(A'BD)\) và \(OA=OC\) nên \(d(C;(A'BD))=d(A;(A'BD))\)

ABCD là hình thoi => \(BD\perp OA,AA'\perp (ABCD)\)

\(\Rightarrow BD\perp AA'\Rightarrow BD\perp (A'OA).\) Gọi H là hình chiếu của A lên A'O

\(\Rightarrow AH\perp A'O, BD\perp AH\Rightarrow AH\perp (A'BD)\Rightarrow d(A;(A'BD))=AH.\)

\(\widehat{BAD}=45^{\circ}\Rightarrow \widehat{ABC}=135^{\circ}\Rightarrow AC^{2}=BA^{2}+BC^{2}-2BA.BC.\cos \widehat{ABC}=a^{2}(2+\sqrt{2})\Rightarrow AO=\frac{a\sqrt{2+\sqrt{2}}}{2}\)

Trong \(\triangle AA'O\) có: \(\frac{1}{AH^{2}}=\frac{1}{AO^{2}}+\frac{1}{AA'^{2}}-\frac{8}{a^{2}}\Rightarrow AH=\frac{a}{2\sqrt{2}}\Rightarrow d(C;(A'BD))=\frac{a}{2\sqrt{2}}.\)

Ta có: AO // O'C' => AOC'O' là hình bình hành => A'O // OC' => AO' // (OB'C')

=> d(AO'; B'O) = d(O'; (OB'C')). Gọi I là hình chiếu của O' lên B'C' => \(OI\perp B'C'.\)

Ta có: \(OO'//AA'\Rightarrow OO'\perp (A'B'C'D')\Rightarrow OO'\perp B'C'\Rightarrow B'C'\perp (OO'I).\)

Gọi K là hình chiếu của O' lên OI => \(O'K\perp OI,B'C'\perp O'K\Rightarrow O'K\perp (OB'C')\Rightarrow d(O';(OB'C'))=O'K.\)

Ta có: \(B'D'^{2}=A'B'^{2}+A'D'^{2}-2A'B'.A'D'.\cos \widehat{B'A'D'}=a^{2}(2-\sqrt{2})\)

\(B'D'=a\sqrt{2-\sqrt{2}},A'C'\perp B'D'\Rightarrow \frac{1}{O'I^{2}}=\frac{1}{O'B'^{2}}+\frac{1}{O'C'^{2}}\Rightarrow O'I=\frac{a}{2\sqrt{2}}.\)

Ta có: \(\frac{1}{O'K^{2}}=\frac{1}{O'I^{2}}+\frac{1}{O'O^{2}}\Rightarrow O'K=\frac{a}{2}\sqrt{\frac{2-\sqrt{2}}{5-2\sqrt{2}}}.\)

Vậy \(d(AO';B'O)=\frac{a}{2}\sqrt{\frac{2-\sqrt{2}}{5-2\sqrt{2}}}\)

Vote (0) Phản hồi (0) 6 năm trước user-avatar Xem hướng dẫn giải user-avatar

Các câu hỏi liên quan

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABCD). Biết \(SD=2a\sqrt{3}\) và góc tạo bởi đường thẳng SC với mặt phẳng (ABCD) bằng 300. Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ điểm B đến mặt phẳng (SAC).

Cho a, b, c là độ dài ba cạnh của một tam giác có chu vi bằng 1. Tìm giá trị lớn nhất của biểu thức: \(T=\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\)

Tính nguyên hàm \(I=\int \frac{3xdx}{x+\sqrt{x^2+4}}\)

Cho hàm số \(y=\frac{x}{x+1}\) 1, Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2, Gọi I là giao điểm của hai đường tiệm cận của (C). Viết phương trình tiếp tuyến của đồ thị \(M \in (C)\) tại điểm sao cho \(IM=\sqrt{2}\)

Help me!

Cho các số thực x, y thỏa mãn \(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(S=(x+y)^2-\sqrt{9-x-y}+\frac{1}{x+y}\)

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có \(AC=a,BC=2a,ACB=120^{\circ}\) và đường thẳng \(A'C\) tạo với mặt phẳng \((ABB'A')\) góc \(30^{\circ}.\) Tính thể tích khối lăng trụ đã cho và khoảng cách giữa hai đường thẳng \(A'B,CC'\) theo a.

Cho a, b, c là ba số thực dương. Tìm giá trị nhỏ nhất của biểu thức \(\small P=\frac{a^2}{c(c^2+a^2)}+\frac{b^2}{a(a^2+b^2)}+\frac{c^2}{b(b^2+b^2)}+2(a^2+b^2+c^2)\)

Làm toát mồ hôi mà vẫn không ra, giúp em vs!

Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số \(y=\frac{-x+1}{x-2}\)

mn người ơi, giải giúp em vs, bài này khó quá!

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \((P):3x-4y+z-7=0\) và đường thẳng \(d:\frac{x-1}{3}=\frac{y-2}{2}=\frac{z-3}{1}\). Tìm tọa độ giao điểm của d và (P) và viết phương trình mặt phẳng (Q) chứa đường thẳng d đồng thời vuông góc với mặt phẳng (P).

Cho hàm số \(y=x^{3}-3x^{2}+2\; (1)\)

a. Khảo sát và vẽ đồ thị hàm số (1)

b. Viết phương trình tiếp tuyến với đồ thị hàm số (1) biết tiếp tuyến vuông góc với đường thẳng (d): x + 9y - 1 = 0

Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến
2018 © Loga - Không Ngừng Sáng Tạo - Bùng Cháy Đam Mê Loga Team

Từ khóa » Hình Lăng Trụ đứng Abcd.a'b'c'd' Có đáy Là Hình Thoi