Đại Cương Về Phương Trình - Lý Thuyết Toán 10
Có thể bạn quan tâm
- Trang chủ
- Lý thuyết toán học
- Toán 10
- CHƯƠNG 3: PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH
- Đại cương về phương trình
1. Khái niệm phương trình
a) Phương trình một ẩn
Phương trình ẩn \(x\) là mệnh đề chứa biến có dạng $f\left( x \right) = g\left( x \right)\,\,\left( 1 \right)$
trong đó $f\left( x \right)$ và $g\left( x \right)$ là những biểu thức của $x.$
Ta gọi $f\left( x \right)$ là vế trái, $g\left( x \right)$ là vế phải của phương trình $\left( 1 \right).$
Nếu có số thực ${x_0}$ sao cho $f\left( {{x_0}} \right) = g\left( {{x_0}} \right)$ là mệnh đề đúng thì ${x_0}$ được gọi là một nghiệm của phương trình $\left( 1 \right).$
Giải phương trình $\left( 1 \right)$ là tìm tất cả các nghiệm của nó (nghĩa là tìm tập nghiệm).
Nếu phương trình không có nghiệm nào cả thì ta nói phương trình vô nghiệm (hoặc nói tập nghiệm của nó là rỗng).
b) Điều kiện xác định của một phương trình
Khi giải phương trình $\left( 1 \right)$, ta cần lưu ý với điều kiện đối với ẩn số $x$ để $f\left( x \right)$ và $g\left( x \right)$ có nghĩa (tức là mọi phép toán đều thực hiện được). Ta cũng nói đó là điều kiện xác định của phương trình (hay gọi tắt là điều kiện của phương trình).
c) Phương trình nhiều ẩn
Ngoài các phương trình một ẩn, ta còn gặp những phương trình có nhiều ẩn số, chẳng hạn
$\begin{array}{l}3x + 2y = {x^2} - 2xy + 8,\,\,\,\,\,\,\left( 2 \right)\\4{x^2} - xy + 2z = 3{z^2} + 2xz + {y^2}.\,\,\,\,\,\,\,\left( 3 \right)\end{array}$
Phương trình $\left( 2 \right)$ là phương trình hai ẩn ($x$ và $y$), còn $\left( 3 \right)$ là phương trình ba ẩn ($x,\,y$ và $z$).
Khi $x = 2,\,\,y = 1$ thì hai vế của phương trình $\left( 2 \right)$ có giá trị bằng nhau, ta nói cặp $\left( {x;y} \right) = \left( {2;1} \right)$ là một nghiệm của phương trình $\left( 2 \right).$
Tương tự, bộ ba số $\left( {x;y;z} \right) = \left( { - \,1;1;2} \right)$ là một nghiệm của phương trình $\left( 3 \right).$
d) Phương trình chứa tham số
Trong một phương trình (một hoặc nhiều ẩn), ngoài các chữ đóng vai trò ẩn số còn có thể có các chữ khác được xem như những hằng số và được gọi là tham số.
2. Phương trình tương đương và phương trình hệ quả
a) Phương trình tương đương
Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.
b) Phép biến đổi tương đương
Định lí:
Nếu thực hiện các phép biển đổi sau đây trên một phương trình mà không làm thay đổi điều kiện của nó thì ta được một phương trình mới tương đương
a) Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức;
b) Nhân hoặc chia hai vế với cùng một số khác $0$ hoặc với cùng một biểu thức luôn có giá trị khác $0.$
Chú ý: Chuyển vế và đổi dấu một biểu thức thực chất là thực hiện phép cộng hay trừ hai vế với biểu thức đó.
c) Phương trình hệ quả
Nếu mọi nghiệm của phương trình $f\left( x \right) = g\left( x \right)$ đều là nghiệm của phương trình ${f_1}\left( x \right) = {g_1}\left( x \right)$ thì phương trình ${f_1}\left( x \right) = {g_1}\left( x \right)$ được gọi là phương trình hệ quả của phương trình $f\left( x \right) = g\left( x \right).$
Ta viết:
$f\left( x \right) = g\left( x \right) \Rightarrow {f_1}\left( x \right) = {g_1}\left( x \right).$
Phương trình hệ quả có thể có thêm nghiệm không phải là nghiệm của phương trình ban đầu.
Ta gọi đó là nghiệm ngoại lai.
Trang trước Mục Lục Trang sauCó thể bạn quan tâm:
- Đại cương về bất phương trình
- Đại cương về hàm số
- Ôn tập chương 3: Hệ hai phương trình bậc nhất hai ẩn
- Giải hệ phương trình bằng phương pháp cộng đại số
- Hệ phương trình bậc nhất hai ẩn chứa tham số
Tài liệu
Toán 9 - Đề kiểm tra 45 phút Đại số chương 1 - Căn bậc hai - Căn bậc 3 - Đề 1
Toán 9 - Đề kiểm tra 45 phút Đại số chương 1 - Căn bậc hai - Căn bậc 3 - Đề 2
Toán 8 : Bài tập nâng cao và một số chuyên đề (Tác giả: Bùi văn Tuyên)
Toán 7: Hai góc đối đỉnh (Phiếu bao gồm lý thuyết và bài tập)
Toán 10 - Đề kiểm tra Đại số 10 chương 4 năm 2018 – 2019 trường Bến Tre – Vĩnh Phúc
Từ khóa » đại Cương Về Phương Trình Lớp 10 Nâng Cao Lý Thuyết
-
Lý Thuyết đại Cương Về Phương Trình | SGK Toán Lớp 10
-
Lý Thuyết Đại Cương Về Phương Trình Hay, Chi Tiết ...
-
Tổng Hợp Lý Thuyết đại Cương Về Phương Trình Cần Nhớ - CungHocVui
-
Top 15 đại Cương Về Phương Trình Lớp 10 Nâng Cao Lý Thuyết
-
Lý Thuyết đại Cương Về Phương Trình | SGK Toán ... - SoanVan.NET
-
Toán 10 Bài 1: Đại Cương Về Phương Trình - HOC247
-
Toán 10 Bài 1: Đại Cương Về Phương Trình
-
Lý Thuyết đại Cương Về Phương Trình - Môn Toán - Tìm đáp án, Giải Bài
-
Lý Thuyết đại Cương Về Phương Trình
-
Lý Thuyết Đại Cương Về Phương Trình Hay, Chi Tiết - Toán Lớp 10
-
Đại Cương Về Phương Trình - Lý Thuyết Và Bài Tập Toán 10
-
GIÁO ÁN ĐẠI SỐ 10 Nâng Cao ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH
-
Đại Cương Về Phương Trình – Chuyên đề đại Số 10
-
GIÁO ÁN ĐẠI SỐ 10 Nâng Cao ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH ...