How To Prove That Sin(A+B)sin(A-B)=sin^2A-sin^2B? - Socratic
Có thể bạn quan tâm
2 Answers
Lucy May 26, 2018Below
Explanation:
#sin(A+B)sin(A-B)=sin^2A-sin^2B#
LHS
= #sin(A+B)sin(A-B)#
Recall: #sin(alpha-beta)=sinalphacosbeta-cosalphasinbeta# And #sin(alpha+beta)=sinalphacosbeta+cosalphasinbeta#
= #(sinAcosB+cosAsinB)times(sinAcosB-cosAsinB)#
= #sin^2Acos^2B-cos^2Asin^2B#
Recall: #sin^2alpha+cos^2alpha=1# From above, we can then assume correctly that :
#sin^2alpha=1-cos^2alpha# AND #cos^2alpha=1-sin^2alpha#
= #sin^2A(1-sin^2B)-sin^2B(1-sin^2A)#
= #sin^2A-sin^2Asin^2B-sin^2B+sin^2Asin^2B#
= #sin^2A-sin^2B#
= RHS
Answer link Jim G. May 26, 2018#"see explanation"#
Explanation:
Answer link#"using the "color(blue)"trigonometric identities"#
#•color(white)(x)sin(x+y)=sinxcosy+cosxsiny#
#•color(white)(x)sin(x-y)=sinxcosy-cosxsiny#
#"consider the left side"#
#(sinAcosB+cosAsinB)(sinAcosB-cosAsinB)#
#=sin^2Acos^2B-cos^2Asin^2B#
#=sin^2A(1-sin^2B)-sin^2B(1-sin^2A)#
#=sin^2Acancel(-sin^2Asin^2B)-sin^2Bcancel(+sin^2Asin^2B)#
#=sin^2A-sin^2B#
#="right side "rArr"verified"#
Related questions
Impact of this question
37810 views around the world You can reuse this answer Creative Commons LicenseTừ khóa » Chứng Minh Sin(a+b)sin(a-b)=cos^2b-cos^2a
-
Chứng Minh Sin(a + B)sin(a - B) = Sin^2a – Sin^2b = Cos^2b - HOC247
-
Bài 4 Trang 154 Toán 10: Chứng Minh Các đẳng Thức - VIETWIKI.VN
-
B) = Sin^2a – Sin^2b = Cos^2b - Haylamdo
-
Prove That Sin(A+B)sin(A-B)=cos^2B-cos^2A - Doubtnut
-
Cos2ab) Cos(a + B)cos(a - B) = Cos2a - Sin2b = Cos2b – Sin2a
-
Prove That `sin(A+B)sin(AB)=sin^2A-sin^2B=cos^2B-cos^2A`
-
Huy - Narkive
-
Chứng Minh: A) \(\frac{cos\left(a-b\right)}{sin\left(a B\right ... - Hoc24
-
Sin.(a+b).sin.(a-b)= Sin2 - Sin2b(Bài Chứng Minh)Lớp 10 ~~~ - Hoc24
-
1) Sin2A+Sin2B+Sin2C=4SinA.SinB.SinC2) Cos 2A + Cos 2B ... - Olm
-
Chứng Minh: A) \(\frac{cos\left(ab\right)}{sin\left(ab\right)}=\frac ... - Olm
-
Prove That Sin(A + B) Sin(A – B) = Cos^2B – Cos^2A