Lớp 3 - Olm
Có thể bạn quan tâm
- Học bài
- Hỏi bài
- Kiểm tra
- ĐGNL
- Thi đấu
- Bài viết Cuộc thi Tin tức Blog học tập
- Trợ giúp
- Về OLM
Mua 1 được 3: Tặng thêm VIP và bộ đề kiểm tra cuối kỳ I khi mua VIP
Lớp livestream ôn tập cuối kỳ I miễn phí dành cho học sinh, tham gia ngay!
Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Cập nhật Hủy Cập nhật Hủy- Mẫu giáo
- Lớp 1
- Lớp 2
- Lớp 3
- Lớp 4
- Lớp 5
- Lớp 6
- Lớp 7
- Lớp 8
- Lớp 9
- Lớp 10
- Lớp 11
- Lớp 12
- ĐH - CĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Tạo câu hỏi Hủy Xác nhận câu hỏi phù hợpChọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
- Tất cả
- Mới nhất
- Câu hỏi hay
- Chưa trả lời
- Câu hỏi vip
Cho tam giác ABC vuông tại A có đường cao AH. Kẻ HE, HF vuông góc với AB, AC. Chứng minh rằng:
a)EB.FC=(AB/AC)3
b) BC.BE.CF = AH3
#Toán lớp 9 1 TG Thầy Giáo Toán 11 tháng 9 2015a. Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu: Tam giác AHB có \(HB^2=BE\cdot BA,\) tam giác AHC có \(HC^2=CF\cdot CA\to\frac{BE}{FC}\cdot\frac{AB}{AC}=\frac{HB^2}{HC^2}=\frac{\left(HB\cdot BC\right)^2}{\left(HC\cdot BC\right)^2}=\frac{AB^4}{AC^4}\to\frac{BE}{CF}=\frac{AB^3}{AC^3}.\)b.
Cách giải lớp 9
Ta có \(\frac{BE}{BH}\cdot\frac{CF}{CH}\cdot\frac{BC}{AH}=\cos B\cdot\cos C\cdot\left(\frac{HB}{AH}+\frac{HC}{AH}\right)=\cos B\cdot\cos C\cdot\left(\tan B+\tan C\right)\)\(=\sin B\cdot\cos C+\cos B\cdot\sin C=\sin^2B+\cos^2B=1.\) (Ở đây chú ý rằng \(\cos B=\sin C,\sin B=\cos C\) ). Suy ra \(BE\cdot CF\cdot BC=\left(BH\cdot CH\right)\cdot AH=AH^2\cdot AH=AH^3.\)
Cách giải lớp 8\(\frac{BE}{BH}\cdot\frac{CF}{CH}\cdot\frac{BC}{AH}=\frac{BA}{BC}\cdot\frac{CA}{BC}\cdot\frac{BC}{AH}=\frac{AB\cdot AC}{BC\cdot AH}=1\to BE\cdot CF\cdot BC=\left(BH\cdot CH\right)\cdot AH=AH^3.\)
Đúng(0) Các câu hỏi dưới đây có thể giống với câu hỏi trên PT Pham Trong Bach 1 tháng 3 2019Cho tam giác ABC vuông tại A. Đường cao AH, kẻ HE, HF lần lượt vuông góc với AB, AC. Chứng minh:
a, E B F C = A B A C 3
b, B C . B E . C F = A H 3
#Toán lớp 9 1 CM Cao Minh Tâm 1 tháng 3 2019a, Sử dụng hệ thức giữa cạnh góc vuông và hình chiếu lên cạnh huyền và cạnh huyền trong tam giác vuông HBA và HCA
b, Tương tự a) và áp dụng hệ thức giữa đường cao và hình chiếu cạnh góc vuông lên cạnh huyền trong tam giác vuông ABC
Đúng(0) BC Bánh Canh Chua Ngọt 22 tháng 6 2021cho tam giác ABC vuông tại A có đường cao AH. Kẻ HE, HF vuông góc với AB,AC. chứng minh rằng:a, EB/FC = AB^3/AC^3b, BC.BE.BF= AH^3
#Toán lớp 9 2 AT An Thy 22 tháng 6 2021câu b bạn tham khảo ở đây
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-goi-ef-theo-thu-tu-la-hinh-chieu-cua-h-tren-ab-aca-chung-minh-bcabcdot-sincaccdot-coscb-chung-minh-afcdot-ac2efcdot-bccdot-aecchung-minh.1076798870119
Đúng(1) AT An Thy 22 tháng 6 2021a) \(HF\parallel AB\) \(\Rightarrow\dfrac{HF}{AB}=\dfrac{CF}{CA}\Rightarrow\dfrac{HF}{CF}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{HF}{CF}.\dfrac{AB^2}{AC^2}=\dfrac{AB^3}{AC^3}\Rightarrow\dfrac{HF}{CF}.\dfrac{BH.BC}{CH.BC}=\dfrac{AB^3}{AC^3}\)
\(\Rightarrow\dfrac{HF.BH}{CF.CH}=\dfrac{AB^3}{AC^3}\Rightarrow\dfrac{HF.BH}{CH}.\dfrac{1}{CF}=\dfrac{AB^3}{AC^3}\left(1\right)\)
Ta có: \(HF\parallel AB\)\(\Rightarrow\angle CHF=\angle CBA\)
Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle CHF=\angle CBA\end{matrix}\right.\)
\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{BH}=\dfrac{HF}{HC}\Rightarrow BE.HC=HF.BH\)
\(\Rightarrow BE=\dfrac{HF.BH}{HC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{BE}{CF}=\dfrac{AB^3}{AC^3}\)
Đúng(2) Xem thêm câu trả lời NT Nguyễn Tino 14 tháng 9 2018 - olmcho tam giác ABC Vuông tại A , đường cao AH kẻ HE, HF lần lượt vuông góc với AB,AC
A chứng minh EB/EC=(AB/AC)^2
B, BC.BE.CF=AH^2
#Toán lớp 9 0 NP Nguyễn Phùng Quang Huy 30 tháng 9 2021Cho tam giác ABC vuông tại A. Đường cao AH, kẻ HE, HF lần lượt vuông góc với AB, AC. CM: EB/FH= AB^2/AC^2 CM: BC.BE.CF=AH^3
#Toán lớp 9 0 NN Nguyễn Nguyễn 7 tháng 6 2016 - olmCho tam giác ABC vuông tại A. Đường cao AH. kẻ HE vuông góc AB, Hf vuông góc AC. Cmr: AH^2= BC.BE.CF
#Toán lớp 9 0 4N 48 Nguyễn Thị Minh Xuân 16 tháng 9 20214) Cho tam giác ABC vuông tại A có AH là đường cao. Kẻ HE vuông góc AB, HF vuông góc AC.
a) Chứng minh: AE.AB = HB.HC
b) Chứng minh: AF2 = AE.EB
c) Chứng minh: AH3 = BE.BC.CF
#Toán lớp 9 1 NL Nguyễn Lê Phước Thịnh 16 tháng 9 2021a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(HB\cdot HC=AH^2\left(1\right)\)
Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=HA^2\left(2\right)\)
Từ (1) và (2) suy ra \(HB\cdot HC=AE\cdot AB\)
Đúng(0) DH DINH HUY TRAN 30 tháng 8 2021 Cho tam giác ABC, AB=5cm,AC=12cm,BC=13cm. AH là đường cao tam giác ABC và AH vuông góc với BCa, Chứng minh: Tam giác ABC là tam giác vuông và tính AHb, Kẻ HE vuông góc với AB tại E và HF vuông góc với AC tại F. Chứng minh: AE.AB=AF.ACc, Tam giác AEF đồng dạng tam giác ABCd,\(\dfrac{EB}{FC}=(\dfrac{AB}{AC})^{3}\)e,...Đọc tiếpCho tam giác ABC, AB=5cm,AC=12cm,BC=13cm. AH là đường cao tam giác ABC và AH vuông góc với BC
a, Chứng minh: Tam giác ABC là tam giác vuông và tính AH
b, Kẻ HE vuông góc với AB tại E và HF vuông góc với AC tại F. Chứng minh: AE.AB=AF.AC
c, Tam giác AEF đồng dạng tam giác ABC
d,\(\dfrac{EB}{FC}=(\dfrac{AB}{AC})^{3}\)
e, BC.BE.CF=\(AH^{3}\)
#Toán lớp 9 1 NL Nguyễn Lê Phước Thịnh 30 tháng 8 2021a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
Đúng(1) PT Pham Trong Bach 28 tháng 7 2019Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB tại E, Kẻ HF vuông góc với AC tại F. Chứng minh tứ giác BEFC nội tiếp
#Toán lớp 9 1 CM Cao Minh Tâm 28 tháng 7 2019Gợi ý: A F E ^ = A H E ^ (tính chất hình chữ nhật và A H E ^ = A B H ^ (cùng phụ B H E ^ )
Đúng(0) C Chanhh 24 tháng 2 2023Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB tại E, Kẻ HF vuông góc với AC tại F. Chứng minh tứ giác BEFC nội tiếp.
#Toán lớp 9 1 MH Minh Hiếu 24 tháng 2 2023Ta có: \(\widehat{C_1}=\widehat{A_1}\)(cùng phụ với \(\widehat{B_1}\)) \(\left(1\right)\)
Xét tứ giác AEHF có: \(\widehat{A}=\widehat{E}=\widehat{F}=\widehat{H}=90^o\)
=> tứ giác AEHF là h.c.n
=> \(\widehat{A_1}=\widehat{E_1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{E_1}=\widehat{C_1}\)
vì \(\widehat{E_1}+\widehat{BEF}=180^o\)
\(\Rightarrow\widehat{C_1}+\widehat{BEF}=180^o\) mà 2 góc đối nhau
=> tứ giác BEFC nội tiếp
Đúng(1) Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên- Tuần
- Tháng
- Năm
- LB Lê Bá Bảo nguyên 20 GP
- N ngannek 20 GP
- 1 14456125 16 GP
- VN vh ng 15 GP
- ND Nguyễn Đức Hoàng 12 GP
- VT Võ Thanh Khánh Ngọc 10 GP
- LB Lương Bảo Phương 6 GP
- NH nguyễn hoành gia bảo 6 GP
- KS Kudo Shinichi@ 4 GP
- NG Nguyễn Gia Bảo 4 GP
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng ĐóngYêu cầu VIP
Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.
Từ khóa » Chứng Minh Eb/fc=(ab/ac)^3
-
EB/FC = (AB/AC)^3. BC * BE * CF = AH^3 - Toán Học Lớp 9 - Lazi
-
Cho Tam Giác ABC Vuông Tại A đường Cao AH . Kẻ HE,Hf Lần Lượt ...
-
Cho Tam Giác ABC Vuông Tại A.Đường Cao AH, Kẻ HE ,HF Lần Lượt ...
-
Cho Tam Giác Vuông Tại A, đường Cao AH. Kẻ HE Vuông Góc Với AB ...
-
Cho Tam Giác ABC Vuông Tại A, đường Cao AH. Kè HE Vuông Góc Với ...
-
AC), Có đường Cao AH, Trung Tuyến AM. Gọi E Và F Lần Lượt La Hình ...
-
Chứng Minh EB = FC Biết Tam Giác Nhọn ABC Có đường Cao AH
-
Bài 2 Cho Tam Giác ABC Vuông Tại A - QANDA
-
Cho Tam Giac Abc Vuong Tai A ,ah La Duong Cao HE,HF Vuong Goc Voi ...
-
[Toán 9] Chứng Minh: AH^3 = BC.BE.CF
-
Cho Tam Giác ABC Vuông Tại A ,đường Cao AH, Kể He ,HF Lần Lượt ...
-
Toan'9:Giup' Mình 2 Bai` Toan' Nay` Voj'.? - Narkive