Lý Thuyết Bất Phương Trình Bậc Nhất Một ẩn Hay, Chi Tiết | Toán Lớp 8
Có thể bạn quan tâm
- Siêu sale sách Toán - Văn - Anh Vietjack 15-12 trên Shopee mall
Bài viết Lý thuyết Bất phương trình bậc nhất một ẩn lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Bất phương trình bậc nhất một ẩn.
Lý thuyết Bất phương trình bậc nhất một ẩn
Bài giảng: Bài 4: Bất phương trình bậc nhất một ẩn - Cô Vương Thị Hạnh (Giáo viên VietJack)
A. Lý thuyết
1. Định nghĩa
Quảng cáoBất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0 ) trong đó a và b là hai số đã cho, a \ne 0 , được gọi là bất phương trình bậc nhất một ẩn.
Ví dụ:
Các bất phương trình bậc nhất một ẩn như: 2x + 3 > 0; 3 - x ≤ 0; x + 2 < 0; 4x + 7 ≥ 0; ...
2. Hai quy tắc biến đổi bất phương trình
a) Quy tắc chuyển vế
Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.
Ví dụ: Giải bất phương trình x - 3 < 4.
Lời giải:
Ta có x - 3 < 4
⇔ x < 4 + 3 (chuyển vế - 3 và đổi dấu thành 3)
⇔ x < 7.
Vậy tập nghiệm của bất phương trình là { x| x < 7 }.
b) Quy tắc nhân với một số.
Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:
Giữ nguyên chiều bất phương trình nếu số đó dương.
Đổi chiều bất phương trình nếu số đó âm.
Ví dụ 1: Giải bất phương trình (x - 1)/3 ≥ 2.
Quảng cáoLời giải:
Ta có: (x - 1)/3 ≥ 2
⇔ (x - 1)/3.3 ≥ 2.3 (nhân cả hai vế với 3)
⇔ x - 1 ≥ 6 ⇔ x ≥ 7.
Vậy tập nghiệm của bất phương trình là { x| x ≥ 7 }.
Ví dụ 2: Giải bất phương trình 1 - 2/3x ≤ - 1.
Lời giải:
Ta có: 1 - 2/3x ≤ - 1 ⇔ - 2/3x ≤ - 2
⇔ - 2/3x.( - 3 ) ≥ ( - 2 )( - 3 ) (nhân cả hai vế với - 3 và đổi chiều)
⇔ 2x ≥ 6 ⇔ x ≥ 3.
Vậy bất phương trình có tập nghiệm là { x| x ≥ 3 }.
3. Giải bất phương trình một ẩn
Quảng cáoÁp dụng hai quy tắc biến đổi trên, ta giải bất phương trình bậc nhất một ẩn như sau:
Dạng ax + b > 0 ⇔ ax > - b
⇔ x > - b/a nếu a > 0 hoặc x < - b/a nếu a < 0.
Vậy bất phương trình có tập nghiệm là
hoặc
Các dạng toán như ax + b < 0, ax + b ≤ 0, ax + b ≥ 0 tương tự như trên
Ví dụ 1: Giải bất phương trình 2x - 3 > 0
Lời giải:
Ta có: 2x - 3 > 0
⇔ 2x > 3 (chuyển - 3 sang VP và đổi dấu)
⇔ 2x:2 > 3:2 (chia cả hai vế cho 2)
⇔ x > 3/2.
Vậy bất phương trình đã cho có tập nghiệm là { x| x > 3/2 }.
Ví dụ 2: Giải bất phương trình 2x - 1 ≤ 3x - 7
Lời giải:
Ta có: 2x - 1 ≤ 3x - 7 ⇔ - 1 + 7 ≤ 3x - 2x
⇔ x ≥ 6.
Vậy bất phương trình đã cho có tập nghiệm là { x| x ≥ 6 }.
B. Bài tập tự luyện
Bài 1: Tìm tập nghiệm của các bất phương trình sau:
Quảng cáoa) ( x + √ 3 )2 ≥ ( x - √ 3 )2 + 2
b) x + √ x < ( 2√ x + 3 )( √ x - 1 )
c) (x - 3)√(x - 2) ≥ 0
Lời giải:
a) Ta có: ( x + √ 3 )2 ≥ ( x - √ 3 )2 + 2
⇔ x2 + 2√ 3 x + 3 ≥ x2 - 2√ 3 x + 3 + 2
⇔ 4√3x ≥ 2 ⇔ x ≥ √3/6
Vậy bất phương trình đã cho có tập nghiệm là S = [ √ 3 /6; + ∞ )
b) Ta có: x + √ x < ( 2√ x + 3 )( √ x - 1 )
Điều kiện: x ≥ 0
⇔ x + √ x < 2x - 2√ x + 3√ x - 3
⇔ - x < - 3 ⇔ x > 3
Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3
Vậy bất phương trình đã cho có tập nghiệm là x > 3
c) Ta có: (x - 3)√(x - 2) ≥ 0
Điều kiện: x ≥ 2
Bất phương trình tương đương là
Vậy tập nghiệm của bất phương trình là x = 2 hoặc x ≥ 3
Bài 2: Có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 - m )x < m vô nghiệm là?
Lời giải:
Rõ ràng nếu m2 - m ≠ 0 ⇔ thì bất phương trình luôn có nghiệm.
Với m = 0, bất phương trình trở thành 0x < 0: vô nghiệm.
Với m = 1, bất phương trình trở thành 0x < 1: luôn đúng với mọi x ∈ R
Vậy với m = 0 thì bất phương trình trên vô nghiệm.
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:
- Lý thuyết Bất phương trình một ẩn
- Bài tập Bất phương trình một ẩn
- Bài tập Bất phương trình bậc nhất một ẩn
- Lý thuyết Phương trình chứa dấu giá trị tuyệt đối
- Bài tập Phương trình chứa dấu giá trị tuyệt đối
- Tổng hợp Lý thuyết & Trắc nghiệm Chương 4 Đại số 8
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
- Giải bài tập Toán 8
- Giải sách bài tập Toán 8
- Top 75 Đề thi Toán 8 có đáp án
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
- Trọng tâm Toán, Anh, KHTN lớp 6 (303 trang - từ 99k)
- Trọng tâm Toán, Anh, KHTN lớp 7 (266 trang - từ 99k)
- Trọng tâm Toán, Anh, KHTN lớp 8 (302 trang - từ 99k)
ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8
Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài hỗ trợ đăng ký : 084 283 45 85
Từ khóa » định Nghĩa Hệ Bất Phương Trình Bậc Nhất Một ẩn
-
Bất Phương Trình Bậc Nhất Một ẩn - Lý Thuyết Và Cách Giải Bài Tập
-
Lý Thuyết Bất Phương Trình Bậc Nhất Một ẩn | SGK Toán Lớp 8
-
Lý Thuyết Bất Phương Trình Bậc Nhất Một ẩn, 1. Định Nghĩa
-
Bất Phương Trình Bậc Nhất Một ẩn
-
Bất Phương Trình Bậc Nhất Một ẩn Là Gì? - Toploigiai
-
Lí Thuyết Bất Phương Trình Bậc Nhất Một ẩn Và Cách Giải Hay
-
Bất Phương Trình Bậc Nhất Một ẩn Có Dạng Là Gì ? Lý Thuyết Và Ví Dụ
-
Giải Bất Phương Trình Bậc Nhất Một Ẩn Lớp 8 - Kiến Guru
-
Lý Thuyết Bất Phương Trình Bậc Nhất Một ẩn Cần Ghi Nhớ - Toán Lớp 8
-
Bất Phương Trình Và Hệ Bất Phương Trình Bậc Nhất Một ẩn
-
Bất Phương Trình Và Hệ Bất Phương Trình Một ẩn - Baitap123
-
Bất Phương Trình Và Hệ Bất Phương Trình Bậc Nhất Một ẩn - 123doc
-
Hệ Bất Phương Trình Bậc Nhất Một ẩn - Tài Liệu Text - 123doc
-
Bất Phương Trình Và Hệ Bất Phương Trình Bậc Nhất Một ẩn