Phương Trình (căn 3 (cot ^2)x - 4cot X + Căn 3 = 0 ) Có Nghiệm

Một sản phẩm của Tuyensinh247.comPhương trình (căn 3 (cot ^2)x - 4cot x + căn 3 = 0 ) có nghiệm là:Câu 4677 Thông hiểu

Phương trình \(\sqrt 3 {\cot ^2}x - 4\cot x + \sqrt 3 = 0\) có nghiệm là:

Đáp án đúng: a

Phương pháp giải

- Tìm ĐKXĐ của phương trình.

- Đặt \(\cot x = t\) và giải phương trình tìm \(t\), từ đó tìm \(x\).

Xem lời giải

Lời giải của GV Vungoi.vn

ĐK: \(\sin x \ne 0 \Leftrightarrow x \ne k\pi \,\,\left( {k \in Z} \right)\)

\(\sqrt 3 {\cot ^2}x - 4\cot x + \sqrt 3 = 0\)

Đặt \(\cot x = t\) khi đó phương trình có dạng

$\sqrt 3 {t^2} - 4t + \sqrt 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = \dfrac{1}{{\sqrt 3 }}\\t = \sqrt 3 \end{array} \right. \Rightarrow \left[ \begin{array}{l}\cot x = \dfrac{1}{{\sqrt 3 }}\\\cot x = \sqrt 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{3} + k\pi \\x = \dfrac{\pi }{6} + k\pi \end{array} \right.\,\,\left( {k \in Z} \right)\,\,\left( {tm} \right)$

Đáp án cần chọn là: a

...

Bài tập có liên quan

Một số phương trình lượng giác thường gặp Luyện Ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

zalo

Câu hỏi liên quan

Phương trình \(\sin 2x + 3\sin 4x = 0\) có nghiệm là:

Phương trình \(\dfrac{{\cos 2x}}{{1 - \sin 2x}} = 0\) có nghiệm là:

Để phương trình \(\dfrac{{{a^2}}}{{1 - {{\tan }^2}x}} = \dfrac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\) có nghiệm, tham số a phải thỏa mãn điều kiện:

Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = \dfrac{\pi }{3}\\\cos x - \cos y = - 1\end{array} \right.\).

Phương trình \(\sqrt 3 {\cot ^2}x - 4\cot x + \sqrt 3 = 0\) có nghiệm là:

Phương trình \({\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\) khi \(m = 1\) có nghiệm là:

Nghiệm của phương trình \(4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\) là:

Số vị trí biểu diễn các nghiệm của phương trình \(4{\sin ^2}x - 4\sin x - 3 = 0\) trên đường tròn lượng giác là:

Với giá trị nào của m thì phương trình \(\sqrt 3 \sin 2x - m\cos 2x = 1\) luôn có nghiệm?

Phương trình \(\sqrt 3 \sin 2x - \cos 2x + 1 = 0\) có nghiệm là:

Khẳng định nào đúng về phương trình \(2\sqrt 2 \left( {\sin x + \cos x} \right)\cos x = 3 + \cos 2x\)

Phương trình \(\sin x + \sqrt 3 \cos x = \sqrt 2 \) có hai họ nghiệm có dạng \(x = \alpha + k2\pi ,\,x = \beta + k2\pi ,\)

\(\left( { - \dfrac{\pi }{2} < \alpha <\beta < \dfrac{\pi }{2}} \right)\) . Khi đó \(\alpha .\beta \) là:

Số vị trí biểu diễn nghiệm của phương trình \(\sin x + \left( {\sqrt 3 - 2} \right)\cos x = 1\) trên đường tròn lượng giác là:

Tổng các nghiệm thuộc đoạn \(\left[ {0;\dfrac{\pi }{2}} \right]\) của phương trình \(2\sqrt 3 {\cos ^2}\dfrac{{5x}}{2} + \sin 5x = 1 + \sqrt 3 \) là:

Phương trình \({\sin ^3}x + {\cos ^3}x = \sin x - \cos x\) có nghiệm là:

Phương trình \(6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\) có nghiệm là:

Trong khoảng \(\left( {0\,\,;\,\,\dfrac{\pi }{2}} \right)\) phương trình \({\sin ^2}4x + 3\sin 4x\cos 4x - 4{\cos ^2}4x = 0\) có:

Có bao nhiêu giá trị $m$ nguyên để phương trình \({\sin ^2}x - m\sin x\cos x - 3{\cos ^2}x = 2m\) có nghiệm?

Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \(\tan x + \cot x = m\) có nghiệm \(x \in \left( {0;\dfrac{\pi }{2}} \right)\) có tổng là:

Với giá trị nào của $m$ thì phương trình \(\left( {1 - m} \right){\tan ^2}x - \dfrac{2}{{\cos x}} + 1 + 3m = 0\) có nhiều hơn 1 nghiệm trên \(\left( {0;\dfrac{\pi }{2}} \right)\) ?

Giải phương trình \(\sqrt 3 \cos 5x - 2\sin 3x\cos 2x - \sin x = 0\) ta được nghiệm:

Giải phương trình \(\cos x\cos \dfrac{x}{2}\cos \dfrac{{3x}}{2} - \sin x\sin \dfrac{x}{2}\sin \dfrac{{3x}}{2} = \dfrac{1}{2}\).

Giải phương trình \(\cos 2x + \cos 4x + \cos 6x = \cos x\cos 2x\cos 3x + 2\).

Giải phương trình \(4\sin x\sin \left( {x + \dfrac{\pi }{3}} \right)\sin \left( {x + \dfrac{{2\pi }}{3}} \right) + \cos 3x = 1\).

Giải phương trình \(\cos 3x\tan 5x = \sin 7x\).

Giải phương trình \(8\sin x = \dfrac{{\sqrt 3 }}{{\cos x}} + \dfrac{1}{{\sin x}}\).

Giải phương trình \(\sin 3x - \dfrac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\).

Giải phương trình \(\left( {\sin x + \sqrt 3 \cos x} \right).\sin 3x = 2\).

Giải phương trình \(\sin 18x\cos 13x = \sin 9x\cos 4x\).

Giải phương trình \(1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\).

Giải phương trình \(\cos x + \cos 3x + 2\cos 5x = 0\).

Giải phương trình \(\sin 3x - \sin x + \sin 2x = 0\).

Gọi m, M lần lượt là GTNN và GTLN của hàm số \(y = \dfrac{{\sin x + 3}}{{\sin x + \cos x + 2}}\). Khi đó giá trị của biểu thức m+M bằng

Số nghiệm của phương trình \(\sin \,x\, + \sqrt 3 \,\cos \,x = 2\sin \,2x\) thuộc khoảng \(\left( {0;2\pi } \right)\) là

Từ khóa » Giải Phương Trình 4cotx-2=(3+cos2x)/sinx