Tìm M để Hàm Số Có Giá Trị Lớn Nhất, Giá Trị Nhỏ Nhất Thoả Mãn điều ...

Tìm m để hàm số có Giá trị lớn nhất, Giá trị nhỏ nhất thoả mãn điều kiện (cực hay)
  • Ra mắt Sách 20 đề THPT quốc gia form 2025 toán, văn, anh.... (từ 80k/1 cuốn)
Trang trước Trang sau

Bài viết Tìm m để hàm số có Giá trị lớn nhất, Giá trị nhỏ nhất thoả mãn điều kiện với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Tìm m để hàm số có Giá trị lớn nhất, Giá trị nhỏ nhất thoả mãn điều kiện.

  • Cách giải bài tập Tìm m để hàm số có Giá trị lớn nhất, Giá trị nhỏ nhất thoả mãn điều kiện
  • Bài tập vận dụng Tìm m để hàm số có Giá trị lớn nhất, Giá trị nhỏ nhất thoả mãn điều kiện
  • Bài tập tự luyện Tìm m để hàm số có Giá trị lớn nhất, Giá trị nhỏ nhất thoả mãn điều kiện

Tìm m để hàm số có Giá trị lớn nhất, Giá trị nhỏ nhất thoả mãn điều kiện (cực hay)

Bài giảng: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)

A. Phương pháp giải & Ví dụ

Quảng cáo

Ví dụ minh họa

Ví dụ 1: Tìm giá trị thực của tham số a để hàm số y = -x3 - 3x2 + a có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.

Hướng dẫn

Đạo hàm f'(x) = -3x2 - 6x ⇒ f'(x) = 0 ⇔Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ta có Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Theo bài ra: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ 2: Cho hàm số Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải với m là tham số thực. Tìm giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 3] bằng -2.

Hướng dẫn

TXĐ: D = R\{-8}.

Ta có Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ 3: Cho hàm só Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải (với m là tham số thực). Tìm các giá trị của m đề hàm số thỏa mãn Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

B. Bài tập vận dụng

Quảng cáo

Câu 1: Cho hàm số f(x) = x3 + (m2 + 1)x + m2 - 2 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 2] bằng 7.

Lời giải:

Đạo hàm f'(x) = 3x2 + m2 + 1 > 0,∀ x ∈ R.

Suy ra hàm số f(x) đồng biến trên Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Theo bài ra: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Câu 2: Cho hàm số Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng -2.

Lời giải:

Đạo hàm Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Suy ra hàm số f(x) đồng biến trên Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Theo bài ra: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Câu 3: Tìm tất cả giá trị của m để giá trị nhỏ nhất của hàm số Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải trên đoạn [1; 2] bằng 1.

Lời giải:

Ta có Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Nếu m < 3: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải nên hàm số đồng biến trên (1; 2)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải (nhận).

Nếu m > 3: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải nên hàm số nghịch biến trên (1; 2)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Câu 4: Tìm các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = |x2 - 2x + m| trên đoạn [-1; 2] bằng 5.

Lời giải:

Xét hàm số f(x) = x2 - 2x + m trên đoạn [-1; 2], ta có f'(x) = 2(x - 1)

và f'(x) = 0 ⇔ x = 1.

Vậy:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

TH1. Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

TH2. Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

TH3. Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Câu 5: Cho hàm số Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng -2.

Lời giải:

Đạo hàm Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải,∀ x ∈[0; 1].

Suy ra hàm số f(x) đồng biến trên [0;1] Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Theo bài ra: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Quảng cáo

C. Bài tập tự luyện

Bài 1. Tìm m để giá trị lớn nhất của hàm số y = x2+2x+m−4 trên đoạn [-2; 1] đạt giá trị nhỏ nhất. Tìm giá trị của m.

Bài 2. Tìm tất cả các giá trị của tham số m để hàm số y = mx+1x+m2 có giá trị lớn nhất trên đoạn [2; 3] bằng 56.

Bài 3. Tìm tất cả các giá trị thực của tham số m để hàm số y = mxx2+1 đạt giá trị lớn nhất tại x = 1 trên [-2; 2].

Bài 4. Cho hàm số y = –2x2 + 4x – 3m. Tìm giá trị của m để hàm số đạt giá trị lớn nhất bằng 10.

Bài 5. Tìm giá trị của m để hàm số y = x + 4−x2+ m có giá trị lớn nhất bằng 32.

Bài 6. Tìm các giá trị thực của m để hàm số y = -x3  - 3x2 + m có giá trị nhỏ nhất trên

[-1; 1] bằng 0.

Bài 7. Tìm m để hàm số y = x+mx−1 có giá trị nhỏ nhất trên [2; 4] bằng 3.

Bài 8. Tìm m để hàm số y = x−m2x+8 có giá trị nhỏ nhất trên [0; 3] bằng -2.

Bài 9. Tìm m để hàm số y = x3 + (m2 + 1)x + m2 - 2 có giá trị nhỏ nhất trên [0; 2] bằng 3.

Bài 10. Tìm m để hàm số y = x2−2x+m có giá trị nhỏ nhất trên [-1; 2] bằng 5.

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

  • Dạng 1: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
  • Trắc nghiệm Tìm GTLN GTNN của hàm số
  • Trắc nghiệm Tìm m để hàm số có Giá trị lớn nhất, Giá trị nhỏ nhất thoả mãn điều kiện
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:

  • Sổ tay toán lý hóa 12 (29k/ 1 cuốn)
  • Tổng ôn tốt nghiệp 12 toán, sử, địa, kinh tế pháp luật.... (80k/1 cuốn)
  • 30 đề Đánh giá năng lực đại học quốc gia Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7)

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

1000 Đề thi bản word THPT quốc gia cá trường 2023 Toán, Lí, Hóa....

4.5 (243)

799,000đ

199,000 VNĐ

Đề thi thử DGNL (bản word) các trường 2023

4.5 (243)

799,000đ

199,000 VNĐ

xem tất cả Trang trước Trang sau gia-tri-lon-nhat-gia-tri-nho-nhat-cua-ham-so.jsp Giải bài tập lớp 12 sách mới các môn học
  • Giải Tiếng Anh 12 Global Success
  • Giải sgk Tiếng Anh 12 Smart World
  • Giải sgk Tiếng Anh 12 Friends Global
  • Lớp 12 Kết nối tri thức
  • Soạn văn 12 (hay nhất) - KNTT
  • Soạn văn 12 (ngắn nhất) - KNTT
  • Giải sgk Toán 12 - KNTT
  • Giải sgk Vật Lí 12 - KNTT
  • Giải sgk Hóa học 12 - KNTT
  • Giải sgk Sinh học 12 - KNTT
  • Giải sgk Lịch Sử 12 - KNTT
  • Giải sgk Địa Lí 12 - KNTT
  • Giải sgk Giáo dục KTPL 12 - KNTT
  • Giải sgk Tin học 12 - KNTT
  • Giải sgk Công nghệ 12 - KNTT
  • Giải sgk Hoạt động trải nghiệm 12 - KNTT
  • Giải sgk Giáo dục quốc phòng 12 - KNTT
  • Giải sgk Âm nhạc 12 - KNTT
  • Giải sgk Mĩ thuật 12 - KNTT
  • Lớp 12 Chân trời sáng tạo
  • Soạn văn 12 (hay nhất) - CTST
  • Soạn văn 12 (ngắn nhất) - CTST
  • Giải sgk Toán 12 - CTST
  • Giải sgk Vật Lí 12 - CTST
  • Giải sgk Hóa học 12 - CTST
  • Giải sgk Sinh học 12 - CTST
  • Giải sgk Lịch Sử 12 - CTST
  • Giải sgk Địa Lí 12 - CTST
  • Giải sgk Giáo dục KTPL 12 - CTST
  • Giải sgk Tin học 12 - CTST
  • Giải sgk Hoạt động trải nghiệm 12 - CTST
  • Giải sgk Âm nhạc 12 - CTST
  • Lớp 12 Cánh diều
  • Soạn văn 12 Cánh diều (hay nhất)
  • Soạn văn 12 Cánh diều (ngắn nhất)
  • Giải sgk Toán 12 Cánh diều
  • Giải sgk Vật Lí 12 - Cánh diều
  • Giải sgk Hóa học 12 - Cánh diều
  • Giải sgk Sinh học 12 - Cánh diều
  • Giải sgk Lịch Sử 12 - Cánh diều
  • Giải sgk Địa Lí 12 - Cánh diều
  • Giải sgk Giáo dục KTPL 12 - Cánh diều
  • Giải sgk Tin học 12 - Cánh diều
  • Giải sgk Công nghệ 12 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 12 - Cánh diều
  • Giải sgk Âm nhạc 12 - Cánh diều

Từ khóa » Tìm M để Max đạt Giá Trị Nhỏ Nhất