Toán 10 Bài 4: Phương Sai Và độ Lệch Chuẩn - Hoc247

Ví dụ 1: Điểm trung bình các môn học của học sinh được cho trong bảng sau:

Điểm

7,5

7,8

8,0

8,4

9,0

9,5

Tần số

1

2

3

2

2

1

n = 11

Tần suất

(%)

9,09

18,18

27,27

18,18

18,18

9,09

100

(%)

Hãy tính phương sai và độ lệch chuẩn của bảng phân bố tần số, tần suất trên

Hướng dẫn:

Điểm trung bình của học sinh là

\(\begin{array}{*{20}{l}} {\bar x = {f_1}{x_1} + {f_2}{x_2} + {f_3}{x_3} + {f_4}{x_4} + {f_5}{x_5} + {f_6}{x_6}}\\ { = \frac{{9,09}}{{100}}.7,5 + \frac{{18,18}}{{100}}.7,8 + \frac{{27,27}}{{100}}.8,0 + \frac{{18,18}}{{100}}.8,4 + \frac{{18,18}}{{100}}.9,0 + \frac{{9,09}}{{100}}.9,5}\\ { \approx 8,3} \end{array}\)

Phương sai s2

\(\begin{array}{l} \begin{array}{*{20}{l}} {{s^2} = {f_1}{{\left( {{x_1} - \bar x} \right)}^2} + {f_2}{{\left( {{x_2} - \bar x} \right)}^2} + ... + {f_k}{{\left( {{x_k} - \bar x} \right)}^2}} \end{array}\\ = \frac{{9,09}}{{100}}{\left( {7,5 - 8,3} \right)^2} + \frac{{18,18}}{{100}}{\left( {7,8 - 8,3} \right)^2} + \frac{{27,27}}{{100}}{\left( {8,0 - 8,3} \right)^2}\\ + \frac{{18,18}}{{100}}{\left( {8,4 - 8,3} \right)^2} + \frac{{18,18}}{{100}}{\left( {9,0 - 8,3} \right)^2} + \frac{{9,09}}{{100}}{\left( {9,5 - 8,3} \right)^2}\\ \approx 0,35 \end{array}\)

Độ lệch chuẩn \(s = \sqrt {{s^2}} \approx 0,59\)

Ví dụ 2: Cho bảng phân bố tần số và tần suất ghép lớp sau

Nhiệt độ trung bình của tháng 2 tại thành phố Vinh từ 1961 đến hết 1990 (30 năm)

Lớp nhiệt độ (0C) Tần số Tần suẩt

[12;14)

[14;16)

[16;18)

[18;20)

[20;22)

1

3

12

9

5

3,33

10,00

40,00

30,00

16,67

Cộng 30

100 (%)

Hãy tính phương sai và độ lệch chuẩn của bảng trên.

Hướng dẫn:

Số trung bình cộng:

\(\begin{array}{l} \bar x = {f_1}{c_1} + {f_2}{c_2} + ... + {f_k}{c_k}\\ = \frac{{3,33}}{{100}}.13 + \frac{{10}}{{100}}.15 + \frac{{40}}{{100}}.17 + \frac{{30}}{{100}}.19 + \frac{{16,67}}{{100}}.21\\ \approx 17,93 \end{array}\)

Phương sai s2

\(\begin{array}{l} {s^2} = {f_1}{\left( {{c_1} - \overline x } \right)^2} + {f_2}{\left( {{c_2} - \overline x } \right)^2} + {f_3}{\left( {{c_3} - \overline x } \right)^2} + {f_4}{\left( {{c_4} - \overline x } \right)^2} + {f_5}{\left( {{c_5} - \overline x } \right)^2}\\ = \frac{{3,33}}{{100}}{\left( {13 - 17,93} \right)^2} + \frac{{10}}{{100}}{\left( {15 - 17,93} \right)^2} + \frac{{40}}{{100}}.{\left( {17 - 17,93} \right)^2} + \frac{{30}}{{100}}{\left( {19 - 17,93} \right)^2} + \frac{{16,67}}{{100}}{\left( {21 - 17,93} \right)^2}\\ \approx 8,64 \end{array}\)

Độ lệch chuẩn \(s = \sqrt {{s^2}} \approx 2,94\)

Từ khóa » Cách Tính độ Lệch Chuẩn Toán 10