Căn B =1/căn C CMR : Căn (ab)/c - Căn Bc/a - Căn (ca)/b=3Giup Mik Vs

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Thư viện số
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM

(Từ ngày 12/12) Lớp live ôn thi cuối kỳ I hoàn toàn miễn phí - Tham gia ngay!!!

 Mở bộ đề mới - nhận quà VIP liền tay

  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
NQ Nguyễn Quỳnh Anh 8 tháng 11 2017 - olm

1/căn a + 1/ căn b =1/căn c               CMR : căn (ab)/c - căn bc/a - căn (ca)/b=3

Giup mik vs !!

#Hỏi cộng đồng OLM #Toán lớp 9 0 PV Phan Vũ Quỳnh Anh 9 tháng 11 2017

1/căn a + 1/ căn b =1/căn c CMR : căn (ab)/c - căn bc/a - căn (ca)/b=3

#Hỏi cộng đồng OLM #Toán lớp 9 1 UK Unruly Kid 9 tháng 11 2017

\(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}=\dfrac{1}{\sqrt{c}}\Rightarrow\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\right)^3=\dfrac{1}{\sqrt{c}^3}\)

\(\dfrac{1}{\sqrt{a}^3}+\dfrac{1}{\sqrt{b}^3}+\dfrac{3}{\sqrt{a}.\sqrt{b}}\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\right)-\dfrac{1}{\sqrt{c}^3}=0\)

\(\dfrac{1}{\sqrt{a}^3}+\dfrac{1}{\sqrt{b}^3}+\dfrac{3}{\sqrt{a}.\sqrt{b}.\sqrt{c}}-\dfrac{1}{\sqrt{c}^3}=0\)

\(\dfrac{1}{\sqrt{c}^3}-\dfrac{1}{\sqrt{a}^3}-\dfrac{1}{\sqrt{b}^3}=\dfrac{3}{\sqrt{a}.\sqrt{b}.\sqrt{c}}\)

\(\sqrt{a}.\sqrt{b}.\sqrt{c}\left(\dfrac{1}{\sqrt{c}^3}-\dfrac{1}{\sqrt{b}^3}-\dfrac{1}{\sqrt{a}^3}\right)=3\)

\(\dfrac{\sqrt{ab}}{c}-\dfrac{\sqrt{bc}}{a}-\dfrac{\sqrt{ca}}{b}=3\left(\text{đ}pcm\right)\)

Đúng(0) MT Minh Thư 5 tháng 12 2019 - olm

Cho a,b,c thực dương t.m: a+b+c=2

CMR: P = ab/căn ( ab+2c) + bc/căn( bc+2a) +ca/căn ( ca+2b)<=1

#Hỏi cộng đồng OLM #Toán lớp 9 3 KN Kiệt Nguyễn 5 tháng 12 2019

Ta có: a + b + c = 2 nên \(2c+ab=c\left(a+b+c\right)+ab=ac+bc+c^2+ab\)

\(=\left(ca+c^2\right)+\left(bc+ab\right)=c\left(a+c\right)+b\left(a+c\right)\)\(=\left(b+c\right)\left(a+c\right)\)

Áp dụng BĐT Cô - si cho 2 số không âm:

\(\frac{1}{b+c}+\frac{1}{a+c}\ge2\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\)(Vì a,b,c thực dương)

\(\Rightarrow\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2c+ab}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)(cmt)

\(\Rightarrow\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{b+c}+\frac{ab}{a+c}\right)\)(nhân 2 vế cho ab thực dương)    (1)

(Dấu "="\(\Leftrightarrow\frac{1}{b+c}=\frac{1}{c+a}\Leftrightarrow b+c=c+a\Leftrightarrow a=b\))

Tương tự ta có: \(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{b+a}+\frac{bc}{a+c}\right)\)(Dấu "="\(\Leftrightarrow b=c\))  (2)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{c+b}+\frac{ca}{b+a}\right)\)(Dấu "="\(\Leftrightarrow a=c\))  (3)

Cộng các BĐT (1) , (2) , (3), ta được:

\(P\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{b+a}+\frac{cb}{c+a}+\frac{ac}{b+a}+\frac{ac}{c+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{b\left(c+a\right)}{c+a}+\frac{a\left(c+b\right)}{c+b}+\frac{c\left(b+a\right)}{b+a}\right)\)

\(\le\frac{1}{2}\left(a+b+c\right)=1\)

Vậy \(P=\frac{ab}{\sqrt{ab+2c}}\)\(+\frac{bc}{\sqrt{bc+2a}}\)\(+\frac{ca}{\sqrt{ca+2b}}\le1\)

(Dấu "="\(\Leftrightarrow a=b=c=\frac{2}{3}\))

Đúng(0) C coolkid 5 tháng 12 2019

Ta có:

\(\frac{ab}{\sqrt{ab+2c}}=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{ab}{c+a}+\frac{ab}{c+b}\)

Tương tự:

\(\frac{bc}{\sqrt{bc+2a}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{ca}{b+c}+\frac{ca}{b+a}\)

Khi đó:

\(P\le\frac{ab}{a+c}+\frac{ab}{c+b}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+c}+\frac{ca}{b+a}\)

\(=\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{b+a}\)

\(=a+b+c=2\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)

Đúng(0) Xem thêm câu trả lời HT Hà Thị Ngọc Anh 8 tháng 1 2017 - olm

ab/căn(c+ab) + bc/căn(a+bc) + ac/căn(b+ca)<=1/2

#Hỏi cộng đồng OLM #Toán lớp 9 1 TN Thắng Nguyễn 8 tháng 1 2017

đề này thiếu r` bn viết lại đi mai mk lm cho

Đúng(0) L1 lmtaan_ 1342 27 tháng 10 2020

cho a,b,c là những số thực dương đôi một khác nhau thỏa mãn: căn (ab)+1/ căn a= căn (bc) +1/căn b= căn (ca) +1/ căn c

chứng minh rằng abc=1

#Hỏi cộng đồng OLM #Toán lớp 9 0 PA Phuong Anh 9 tháng 11 2017 - olm

a,b,c>0 a+b+c=1 cmr B=căn (a^2-ab+b^2)+căn(b^2-bc+c^2)+căn(c^2-ac+a^2)>=1

#Hỏi cộng đồng OLM #Toán lớp 9 1 NA Nguyễn Anh Quân 9 tháng 11 2017

Xét \(\sqrt{a^2-ab+b^2}\) = \(\sqrt{\left(a^2+2ab+b^2\right)-3ab}\) = \(\sqrt{\left(a+b\right)^2-3ab}\)

     >= \(\sqrt{\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2}\)( bđt ab <= (a+b)^2/4) = 1/2 (a+b)

Tương tự căn (b^2-bc+c^2) >= 1/2(b+c) ; (c^2-ca+a^2) >= 1/2 (c+a)

=> B >= 1/2 . (a+b+b+c+c+a) = 1/2 . 2 . (a+b+c) = 1 => ĐPCM

Dấu "=" xảy ra <=> a=b=c=1/3

Đúng(0) LC Lê Châu Linh 29 tháng 9 2017 - olm

cho 3 số thực dương ab,c thỏa mãn:ab+bc+ca=1. Chứng minh:((b+c)*căn(a^2+1)/(căn(b^2+1)*căn(c^2+1)

 

#Hỏi cộng đồng OLM #Toán lớp 9 2 TN Thắng Nguyễn 29 tháng 9 2017

Đặt \(THANG=\frac{\left(b+c\right)\sqrt{a^2+1}}{\sqrt{b^2+1}\sqrt{c^2+1}}\)

\(=\frac{\left(b+c\right)\sqrt{a^2+ab+bc+ca}}{\sqrt{b^2+ab+bc+ca}\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{\left(b+c\right)\sqrt{\left(a+b\right)\left(a+c\right)}}{\sqrt{\left(b+c\right)\left(a+b\right)}\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\frac{\left(b+c\right)}{\sqrt{\left(b+c\right)}\sqrt{\left(b+c\right)}}=\frac{\left(b+c\right)}{\sqrt{\left(b+c\right)^2}}\)

\(=\frac{b+c}{b+c}=1\left(b,c\in R^+\right)\)

Đúng(0) LC Lê Châu Linh 29 tháng 9 2017

chứng minh bằng 1

Đúng(0) Xem thêm câu trả lời LQ Lê Quân 29 tháng 10 2021

chứng minh: căn a+căn b+căn c >= ab+bc+ca với a, b, c >0

#Hỏi cộng đồng OLM #Toán lớp 8 2 LQ Lê Quân 29 tháng 10 2021

\(\sqrt{a}+\sqrt{b}+\sqrt{c}>=ab+bc+ca\)

Đúng(0) NM Nhật Minh Trần 15 tháng 12 2021

bài này dễ thôi

Đúng(0) Xem thêm câu trả lời MK Minh Khoa 1 tháng 3 2020 - olm

1. x, y, z >=0. 

Chứng minh rằng: 4(xy+yz+xz)<=Căn((x+y)(y+z)(x+z))(căn(x+y)+căn(y+z)+căn(x+z)).

2. Cho a, b, c>0 thỏa 1/a+1/b+1/c=3.

Tìm GTLN của P=1/căn(a2-ab+b2)+1/căn(b2-bc+c2)+1/căn(c2-ca+a2)

#Hỏi cộng đồng OLM #Toán lớp 9 2 NL Nguyễn Linh Chi 1 tháng 3 2020

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

Đúng(0) T tth_new 1 tháng 3 2020

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.

Đúng(0) Xem thêm câu trả lời BN Bùi ngọc đức 29 tháng 3 2018 - olm

Cho ab + bc + ca = 1

Tìn giá trị lớn nhất của S= a/căn của (1 + a2) + b/căn của (1+ b2) + c/ căn của ( 1 + c2)

#Hỏi cộng đồng OLM #Toán lớp 9 2 CC chikaino channel 29 tháng 3 2018

Mình viết trên điện thoại có gì sai thông cảm Ta có ab+bc+ac=1

Thì \({\sqrt{1-a^2}}\) 

=\({\sqrt{ab+bc+ac+a^2}}\) 

\({\sqrt{(b+a)(a+c)}}\) \(≤{b+2a+c\over2}\)  

Thì a/ căn của (1-a^2) ≥ 2a/(b+2a+c)

Tương tự với cách trên thì

b/  căn của (1-b^2)≥ 2b/(a+2b+c)

Và c/ căn của (1-c^2)≥2c/(a+b+2c)

Bạn cộng ba cái đó lại đặt là (1) rồi làm tiếp

Ta có bài toán phụ

\( {1\over {a+b}}≤ {{a+b}\over4ab}\) 

\(= {1\over4}({1\over a}+{1\over b})\) 

Tách 2a;2b;2c ở từng mẫu rồi áp dụng công thức trên ta đc

(1) \(≤{2a{.1 \over 4}({1\over b+a}+{1\over a+c}})\) +2b (viết tương tự như cái này vì mình viết điện thoại hiư lâu bạn viết tiếp nhá viết tới cái 2c nhân với 1/4 và cái tổng rồi) + 

\( {2a\over b+a}+{2a\over a+c}+{2b\over b+a}+{2b\over b+c}+{2c\over a+c}+{2c\over b+c}\) 

= 1/4×{[(2a+2b)/(a+b)]+[(2a+2c)/(a+c)]+[(2b+2c)/b+c]}

=1/4 ×(2+2+2)

= 3/2

Vậy Max của S =3/4 khi a=b=c=1/4

Chúc bạn học tốt

Đúng(0) CC chikaino channel 29 tháng 3 2018

Bạn dợi mình học đi thêm về rùi chụp lên cho

Đúng(0) Xem thêm câu trả lời Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • E ElmSunn 2 GP
  • AA admin ([email protected]) 0 GP
  • VT Vũ Thành Nam 0 GP
  • CM Cao Minh Tâm 0 GP
  • NV Nguyễn Vũ Thu Hương 0 GP
  • VD vu duc anh 0 GP
  • OT ♑ ঔღ❣ ๖ۣۜThư ღ❣ঔ ♑ 0 GP
  • LT lương thị hằng 0 GP
  • TT Trần Thị Hồng Giang 0 GP
  • HA Hải Anh ^_^ 0 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học trực tuyến OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Căn A/b+c + Căn B/a+c + Căn C/a+b 2