Cho Tứ Diện ABCD Có Các Mặt ABC Và BCD Là Các Tam Giác đều ...

KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY Cho tứ diện ABCD có các mặt ABC và BCD là các tam giác đều cạnh 2 hai mặt phẳng ( ABD ) và ( ACD ) v Cho tứ diện ABCD có các mặt ABC và BCD là các tam giác đều cạnh 2 hai mặt phẳng ( ABD ) và ( ACD ) v

Câu hỏi

Nhận biết

Cho tứ diện \(ABCD\) có các mặt \(ABC\) và \(BCD\) là các tam giác đều cạnh \(2,\) hai mặt phẳng \(\left( {ABD} \right)\) và \(\left( {ACD} \right)\) vuông góc với nhau. Tính bán kính mặt cầu ngoại tiếp tứ diện \(ABCD.\)

A. \(2\sqrt 2 \) B. \(\sqrt 2 \) C. \(\dfrac{{2\sqrt 3 }}{3}\) D. \(\dfrac{{\sqrt 6 }}{3}\)

Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Các tam giác đều \(ABC\) và \(BCD\) có cạnh 2

\( \Rightarrow BD = DC = BC = AB = AC = 2\)

Nên tam giác \(CAD\) cân tại \(C\) và  tam giác \(BAD\) cân tại \(B.\)

Lấy \(H\) là trung điểm \(AD \Rightarrow CH \bot AD\) (do tam giác \(CAD\) cân tại \(C\))

Ta có \(\left\{ \begin{array}{l}\left( {CAD} \right) \bot \left( {BAD} \right)\\\left( {CAD} \right) \cap \left( {BAD} \right) = AD\\CH \bot AD,\,CH \subset \left( {CAD} \right)\end{array} \right. \Rightarrow CH \bot \left( {BAD} \right) \Rightarrow CH \bot BH\)  (1)

Lại có  \(\Delta CAD = \Delta BAD\left( {c - c - c} \right)\) nên \(BH = CH\) (2)

Từ (1) và (2) suy ra tam giác \(CHB\) vuông cân tại \(H\) có cạnh huyền \(CB = 2.\).

Suy ra \(B{C^2} = B{H^2} + C{H^2} \Leftrightarrow 2B{H^2} = {2^2} \Rightarrow BH = CH = \sqrt 2 .\)

Xét tam giác \(CAH\) vuông tại \(H\) có \(\cos \widehat {ACH} = \dfrac{{CH}}{{AC}} = \dfrac{{\sqrt 2 }}{2} \Rightarrow \widehat {ACH} = 45^\circ \)

Lại thấy \(CH\) là phân giác của \(\widehat {ACD}\)  (vì \(\Delta CAD\) cân tại \(C\)) nên \(\widehat {ACH} = \widehat {HCD} = 45^\circ  \Rightarrow \widehat {ACD} = 90^\circ \)

Hay tam giác \(CAD\) vuông cân tại \(C \Rightarrow CH = \dfrac{1}{2}AD = HA = HD\) (3)

Vì \(\Delta CAD = \Delta BAD\left( {c - c - c} \right)\) nên \(\Delta ABD\) vuông cân tại \(B \Rightarrow BH = \dfrac{{AD}}{2} = HD = HA\) (4)

Từ (3) và (4) suy ra \(HA = HB = HC = HD = \sqrt 2 \)  hay \(H\) là tâm mặt cầu ngoại tiếp tứ diện \(ABCD\) và bán kính mặt cầu là \(\sqrt 2 \).

Chọn B.

Ý kiến của bạn Hủy

Luyện tập

Câu hỏi liên quan

  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Tứ Diện Abcd Có Abc Và Bcd đều