Chứng Minh N^6 + N^4 - 2n^2 Chia Hết Cho 72Chứng Minh: N6 + N4

Loga.vn
  • Khóa học
  • Trắc nghiệm
  • Bài viết
  • Hỏi đáp
  • Giải BT
  • Tài liệu
  • Games
  • Đăng nhập / Đăng ký
Loga.vn
  • Khóa học
  • Đề thi
  • Phòng thi trực tuyến
  • Đề tạo tự động
  • Bài viết
  • Câu hỏi
  • Hỏi đáp
  • Giải bài tập
  • Tài liệu
  • Games
  • Nạp thẻ
  • Đăng nhập / Đăng ký
user-avatar trang01672556852 5 năm trước

Chứng minh n^6 + n^4 - 2n^2 chia hết cho 72

Chứng minh: n6 + n4 - 2n2 chia hết cho 72

Loga Toán lớp 9 0 lượt thích 3518 xem 1 trả lời Thích Trả lời Chia sẻ user-avatar hoahuongduong

Đặt A = \(n^6+n^4-2n^2=n^2\left(n^4++n^2-2\right)\)

=\(n^2\left(n^4-1+n^2-1\right)\)

=\(n^2\left[\left(n^2-1\right)\left(n^2+1\right)+n^2-1\right]\)

=\(n^2\left(n^2-1\right)\left(n^2+2\right)\)

+ Nếu n chẳn ta có n = 2k (k thuộc N)

A=\(4k^2\left(2k-1\right)\left(2k+1\right)\left(4k^2+2\right)=8k^2\left(2k-1\right)\left(2k+1\right)\left(2k^2+1\right)\)

Suy ra A chia hết cho 8 + Nếu n lẻ ta có n = 2k + 1 (k thuộc N)

A=\(\left(2k+1\right)^2.2k\left(2k+2\right)\left(4k^2+4k+1+2\right)\)

=\(4k\left(k+1\right)\left(2k+1\right)^2\left(4k^2+4k+3\right)\)

k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp Suy ra A chia hết cho 8 Do đó A chia hết cho 8 với mọi n thuộc N * Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. * Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).

Suy ra:\(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. Vậy A chia hết cho 72 với mọi n thuộc N.

Vote (0) Phản hồi (0) 5 năm trước user-avatar Xem hướng dẫn giải user-avatar

Các câu hỏi liên quan

Tính 1/2-căn x

\(\dfrac{1}{2-\sqrt{x}}\)

Chứng minh rằng căn(a^2+b^2) >=a+b/căn2 với mọi a;b lớn hơn hoặc bằng 0

chứng minh rằng \(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)với mọi a;b lớn hơn hoặc bằng 0

Tìm tất cả các số thực x thỏa mãn điều kiện 2 căn(x-1) + căn(12-4x) >=4 và1≤x≤3

tìm tất cả các số thực x thỏa mãn điều kiện2\(\sqrt{x-1}+\sqrt{12-4x}\)≥4

và1≤x≤3

Chứng minh bất đẳng thức a^2+b^2+c^2+d^2 >= a(b+c+d)

Chứng minh bất đẳng thức:

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

Ai giúp mình với

Tìm x biết 3/2 căn(4x^2-20) + 2 căn(x^2-5/9) -3 căn(x^2-5)=2

Tìm x biết:

\(\dfrac{2}{3}\)\(\sqrt{4x^2-20}\)+2\(\sqrt{\dfrac{x^2-5}{9}}\)-3\(\sqrt{x^2-5}\)=2

Tính 1/2-cănx

\(\dfrac{1}{2-\sqrt{x}}\)

Giải phương trình căn(x^2-4x+4)=2-x

Giải phương trình:

a) \(\sqrt{x^2-4x+4}=2-x\) b) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

Chứng minh bất đẳng thức a^2+b^2+c^2+d^2>= a(b+c+d)

Chứng minh bất đẳng thức:

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

Ai giúp mình với ( đề chuẩn k sai nha )

Tính căn(căn5 - căn(3-căn(29-6 căn20)))

Tính

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)

\(B=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

Chứng minh [a^2 / (b + c)] + [b^2 / (c + a)] + [c^2 / (a + b)] ≥ [( a + b + c ) / 2]

Cho a,b,c là các số dương. Chứng minh:

[a^2 / (b + c)] + [b^2 / (c + a)] + [c^2 / (a + b)] ≥ [( a + b + c ) / 2]

Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến
2018 © Loga - Không Ngừng Sáng Tạo - Bùng Cháy Đam Mê Loga Team

Từ khóa » Chứng Minh N^6-n^4+2n^3+2n^2