Thế Nào Là Hai Bất Phương Trình Tương đương Cho Ví Dụ
Có thể bạn quan tâm
Nội dung chính Show
- Lí thuyết[sửa]
- Khái niệm bất phương trình[sửa]
- Bất phương trình tương đương[sửa]
- Hệ bất phương trình một ẩn[sửa]
- BÀI TẬP[sửa]
- Xem thêm[sửa]
- Tài liệu tham khảo[sửa]
- Liên kết ngoài[sửa]
- Tải app VietJack. Xem lời giải nhanh hơn!
Với Cách tìm điều kiện để hai bất phương trình tương đương hay, chi tiết môn Toán lớp 8 phần Đại số sẽ giúp học sinh ôn tập, củng cố kiến thức từ đó biết cách làm các dạng bài tập Toán lớp 8 Chương 4: Bất phương trình bậc nhất một ẩn để đạt điểm cao trong các bài thi môn Toán 8.
Dạng bài: Giải thích sự tương đương của hai bất phương trình
A. Phương pháp giải
Thực hiện theo các bước sau:
Bước 1: Sử dụng một vài biến đổi cơ bản (liên hệ giữa thứ tự và phép cộng, phép nhân) để tìm các tập nghiệm S1,S2 lần lượt của hai bất phương trình đã cho.
Bước 2. Nếu S1=S2, ta kết luận hai bất phương trình tương đương; nếu S1≠S2, ta kết luận hai bất phương trình không tương đương.
B. Ví dụ minh họa
Câu 1: Hai bất phương trình sau có tương đương không? Vì sao?
Lời giải:
Bất phương trình vô nghiệm vì với mọi x, ta có . Bất phương trình 2x+3<2(x+1) vô nghiệm vì tương đương với
Hai bất phương trình đã cho tương đương, vì cả hai đều có tập nghiệm như nhau (đều là tập rỗng).
Câu 2: Các cặp bất phương trình sau đây có tương đương không? Vì sao?
Giải. a) Tập nghiệm của BPT
Tập nghiệm của BPT
Vì S1 = S2 nên hai BPT trên tương đương.
b) Tập nghiệm của BPT x2 + 3 > 0 là
Tập nghiệm của BPT là
Vì S1≠S2 nên hai BPT không tương đương.
Câu 3: Cho hai bất phương trình . Tìm m để hai bất phương trình tương đương.
Lời giải:
Ta biến đổi BPT thành . Hai BPT tương đương
Vậy m=0 hoặc m=-2.
C. Bài tập tự luyện
Câu 1: Các cặp bất phương trình sau đây có tương đương không? Vì sao?
Câu 2: Tìm các giá trị của m để hai bất phương trình tương đương.
Câu 3: Các cặp bất phương trình sau đây có tương đương không? Vì sao?
Câu 4: Cho các bất phương trình: và x ≤ 0 .Tìm m để hai bất phương trình tương đương.
Xem thêm các dạng bài tập Toán lớp 8 chọn lọc hay khác:
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
- Giải bài tập Toán 8
- Giải sách bài tập Toán 8
- Top 75 Đề thi Toán 8 có đáp án
Giới thiệu kênh Youtube VietJack
- Hỏi bài tập trên ứng dụng, thầy cô VietJack trả lời miễn phí!
- Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 8 có đáp án
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k8: fb.com/groups/hoctap2k8/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
Từ VLOS
Khi nhân hai vế của bất phương trình với cùng một số khác 0, thì ta phải:
Thế còn, khi nhân hai vế của bất phương trình với cùng một biểu thức thì sao? |
Lí thuyết[sửa]
Ở lớp 8, chúng ta đã được làm quen với một số khái niệm liên quan đến bất phương trình: bất phương trình một ẩn, tập nghiệm của bất phương trình, giải bất phương trình, hai bất phương trình tương đương, quy tắc biến đổi bất phương trình... Bài này, chúng ta sẽ tìm hiểu một cách đầy đủ hơn về các khái niệm đó, ngoài ra chúng ta còn biết thêm: thế nào là hệ bất phương trình một ẩn và cách giải nó.
Khái niệm bất phương trình[sửa]
Bất phương trình một ẩn[sửa]
Cũng giống như khái niệm phương trình một ẩn, ta có định nghĩa sau về bất phương trình một ẩn:
CHÚ Ý- Các mệnh đề chứa biến dạng: f(x) > g(x), f(x) ≤ g(x) và f(x) ≥ g(x) (2) cũng được gọi là các bất phương trình một ẩn.
- Các phát biểu trong định nghĩa trên cho bất phương trình (1), cũng đúng cho các bất phương trình (2).
Hoạt động 1 | Cho các bất phương trình sau: a) 2x < 3; b) . 1. Trong các số: , số nào là nghiệm, số nào không là nghiệm của bất phương trình (a). 2. Giải các bất phương trình (a) và (b), biểu diễn tập nghiệm của mỗi bất phương trình đó trên các trục số khác nhau và dùng các tập con thường dùng để viết các tập nghiệm đó. |
Dưới đây, chúng ta chỉ nói tới bất phương trình dạng f(x) < g(x). Đối với các bất phương trình dạng f(x) > g(x), f(x) ≤ g(x) và f(x) ≥ g(x), ta cũng có các kết qủa tương tự.
Điều kiện của một bất phương trình[sửa]
Tương tự như điều kiện của phương trình, ta gọi các điều kiện của ẩn số x để các biểu thức f(x) và g(x) có nghĩa là điều kiện xác định của bất phương trình (hay gọi tắt là điều kiện của bất phương trình).
Chẳng hạn, điều kiện của bất phương trình:
là 3 - x ≥ 0 và x + 1 ≥ 0.
Bất phương trình chứa tham số[sửa]
Cũng giống như phương trình chứa tham số. Trong một bất phương trình, ngoài các chữ đóng vai trò ẩn số còn có thể có các chữ khác, các chữ này được xem như những hằng số và được gọi là tham số. Tập nghiệm của bất phương trình có thể phụ thuộc vào tham số.
Giải và biện luận bất phương trình chứa tham số nghĩa là xét xem với giá trị nào của tham số thì bất phương trình vô nghiệm, có nghiệm và tìm các nghiệm đó.
Chẳng hạn:
- Bất phương trình (2m + 1)x - 3 < 0 có thể được coi là một bất phương trình ẩn x chứa tham số m.
- Bất phương trình y2 - 2ty + 1 ≥ 0 có thể được coi là một bất phương trình ẩn y chứa tham số t.
Bất phương trình tương đương[sửa]
Định nghĩa[sửa]
Ở lớp 8, chúng ta đã được biết thế nào là hai bất phương trình tương đương. Dưới đây, chúng ta có một định nghĩa đầy đủ hơn.
Giống như phương trình tương đương, ta có:
Hai bất phương trình (cùng ẩn) được gọi là tương đương nếu chúng có cùng tập nghiệm. Nếu f(x) < g(x) tương đương với f1(x) < g1(x) thì ta viết: f(x) < g(x) f1(x) < g1(x) |
Hoạt động 2 | Các khẳng định sau đây đúng hay sai? Vì sao? a) b) |
- Hai bất phương trình tương đương trên D, hoặc
- Với điều kiện D, hai bất phương trình là tương đương với nhau.
Phép biến đổi tương đương[sửa]
Cũng như với phương trình, để giải một bất phương trình ta liên tiếp biến đổi nó thành những bất phương trình tương đương cho đến khi được bất phương trình đơn giản nhất mà ta có thể viết ngay tập nghiệm. Các phép biến đổi như vậy, không làm thay đổi tập nghiệm của bất phương trình, được gọi là các phép biến đổi tương đương.
Mở rộng từ các quy tắc biến đổi bất phương trình đã biết, ta có một số phép biến đổi tương đương sau, thường được sử dụng khi giải bất phương trình.
Cộng/trừ[sửa]
Cộng/trừ hai vế của bất phương trình với cùng một biểu thức mà không làm thay đổi điều kiện của bất phương trình ta được một bất phương trình tương đương. |
NHẬN XÉT.
Nếu cộng hai vế của bất phương trình P(x) < Q(x) + f(x) với biểu thức -f(x) ta được bất phương trình P(x) - f(x) < Q(x). Do đó:
Như vậy, chuyển vế và đổi dấu một hạng tử trong một bất phương trình ta được một bất phương trình tương đương.
VÍ DỤ 1 | Xét bất phương trình Ta có:
(Biến đổi đồng nhất) (Biến đổi đồng nhất) (Chuyển vế và đổi dấu hạng tử) (Biến đổi đồng nhất) |
Nhân/chia[sửa]
Nhân/chia hai vế của bất phương trình với cùng một biểu thức luôn nhận giá trị dương (mà không làm thay đổi điều kiện của bất phương trình) ta được một bất phương trình tương đương. nếu Nhân (chia) hai vế của bất phương trình với cùng một biểu thức luôn nhận giá trị âm (mà không làm thay đổi điều kiện của bất phương trình) và đổi chiều bất phương trình ta được một bất phương trình tương đương. nếu |
VÍ DỤ 2 | a) Bất phương trình (Chia cả hai vế cho ) x + 1 < 2x. b) Bất phương trình (Chia cả hai vế cho , đổi chiều bất phương trình.)
|
Bình phương[sửa]
Bình phương hai vế của một bất phương trình có hai vế không âm mà không làm thay đổi điều kiện của nó ta được một bất phương trình tương đương. nếu |
VÍ DỤ 3 | Giải bất phương trình |
Lời giải | Hai vế của bất phương trình đều có nghĩa và dương với mọi x. Bình phương hai vế bất phương trình này ta được:
Vậy nghiệm của bất phương trình là |
Hệ bất phương trình một ẩn[sửa]
Có những bài toán yêu cầu tìm các giá trị của ẩn số x thỏa mãn đồng thời nhiều bất phương trình. Nói cách khác, khi đó ta cần giải một hệ bất phương trình ẩn x.
Mỗi số thực x đồng thời là nghiệm của tất cả các bất phương trình của hệ được gọi là một nghiệm của hệ bất phương trình.
Giải hệ bất phương trình là tìm tập nghiệm của nó.
Hiển nhiên, tập nghiệm của một hệ bất phương trình là giao của tất cả các tập nghiệm của các bất phương trình trong hệ. Do đó:
Muốn giải hệ bất phương trình một ẩn, ta giải từng bất phương trình của hệ rồi lấy giao của các tập nghiệm thu được.VÍ DỤ 4 | Giải hệ bất phương trình |
Lời giải | Giải lần lượt từng bất phương trình của hệ, ta có: Biểu diễn trên trục số: Tập nghiệm của (1) là:
Tập nghiệm của (2) là:
Tập nghiệm của (3) là:
Giao của ba tập nghiệm là:
Vậy tập nghiệm của hệ là: hay còn có thể viết là . |
Suy ra, Vậy tập nghiệm của hệ bất phương trình là:
BÀI TẬP[sửa]
1. Một bạn lập luận như sau: Do hai vế của bất phương trình luôn không âm nên bình phương hai vế, ta được bất phương trình tương đương . Theo em, lập luận trên có đúng không? Vì sao?
2. Tìm điều kiện xác định rồi suy ra tập nghiệm của mỗi bất phương trình sau: | |
a) | b) |
c) | d) |
3. Trong hai bất phương trình sau đây, bất phương trình nào tương đương với bất phương trình 2x - 1 ≥ 0:
và4. Trong bốn cặp bất phương trình sau đây, hãy chọn ra các cặp bất phương trình tương đương (nếu có): | |
a) x - 2 > 0 và | b) x - 2 < 0 và > 0; |
c) x - 2 ≤ 0 và ≤ 0; | d) x - 2 ≥ 0 và ≥ 0; |
5. Giải các bất phương trình sau: | |
a) | b) |
c) | d) |
e) | f) |
6. Giải hệ bất phương trình: | |
a) | b) |
c) | d) |
e) | f) |
g) | h) |
Xem thêm[sửa]
Tài liệu tham khảo[sửa]
- Sách in:
- Đại số 10, Nhà xuất bản Giáo dục, 2006, trang 80.
- Đại số 10 Nâng cao, Nhà xuất bản Giáo dục, 2006, trang 113 và 117.
- Đại số 10, Nhà xuất bản Giáo dục, 2001, trang 78 và 88.
- Tài liệu giáo khoa thí điểm, Đại số 10, Ban khoa học tự nhiên, Nhà xuất bản Giáo dục, 1997, trang 124 và 143.
Liên kết ngoài[sửa]
- Bất phương trình trên Wikipedia.
<<< Đại số 10
Từ khóa » Ví Dụ Về 2 Bất Phương Trình Tương đương
-
Dạng 2: Hai Bất Phương Trình Tương đương | 7scv
-
Câu 1. A) Thế Nào Là Hai Bất Phương Trình Tương đương ? B) Hai Bất ...
-
Cặp Bất Phương Trình Tương đương
-
Bất Phương Trình Một ẩn Và Bất Phương Trình Tương đương
-
Ví Dụ Về Hai Bất Phương Trình Tương đương
-
Ví Dụ Về Hai Bất Phương Trình Tương đương | HoiCay - Top Trend News
-
định Nghĩa Hai Bất Phương Trình Tương đương - 123doc
-
Ví Dụ Về Bất Phương Trình Tương đương - 123doc
-
Đại Số 10/Chương IV/§2. Bất Phương Trình Và Hệ Bất ... - VLOS
-
Bài 3 Trang 88 Sgk đại Số 10: Bài 2. Bất Phương Trình Và Hệ Bất ...
-
Bài 2: Bất Phương Trình Và Hệ Bất Phương Trình Một ẩn
-
[CHUẨN NHẤT] Thế Nào Là Hai Phương Trình Tương đương
-
Cách Tìm điều Kiện để Hai Bất Phương Trình Tương đương Hay, Chi Tiết