Cho Tổng ((S_n) = (1)((1.2)) + (1)((2.3)) + (1)((3.4)) + ... + (

Một sản phẩm của Tuyensinh247.comCho tổng ((S_n) = (1)((1.2)) + (1)((2.3)) + (1)((3.4)) + ... + (1)((n( (n + 1) ))) ). Mệnh đề nào đúng?Câu 4992 Vận dụng

Cho tổng \({S_n} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{n\left( {n + 1} \right)}}\). Mệnh đề nào đúng?

Đáp án đúng: b

Phương pháp giải

Dùng phương pháp quy nạp toán học để chứng minh hoặc có thể sử dụng nhận xét:\(\dfrac{1}{{k\left( {k + 1} \right)}} = \dfrac{1}{k} - \dfrac{1}{{k + 1}}\,\,\forall k \in N^*\)

Xem lời giải

Lời giải của GV Vungoi.vn

Cách 1:

Bằng phương pháp quy nạp toán học, ta sẽ chứng minh được \({S_n} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{n\left( {n + 1} \right)}} = \dfrac{n}{{n + 1}}\,\,\left( * \right)\)

Thật vậy, với $n = 1$ ta có \({S_1} = \dfrac{1}{{1.2}} = \dfrac{1}{2} = \dfrac{1}{{1 + 1}}\)

Giả sử (*) đúng đến $n = k(k \ge 1) $, khi đó ta có:

\({S_k} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{k\left( {k + 1} \right)}} = \dfrac{k}{{k + 1}}\), ta chứng minh (*) đúng đến $n = k + 1$, tức là cần chứng minh

\({S_{k + 1}} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \dfrac{{k + 1}}{{k + 2}}\)

Ta có:

\(\begin{array}{l}{S_{k + 1}} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{k\left( {k + 1} \right)}} + \dfrac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)}}\\ = \dfrac{k}{{k + 1}} + \dfrac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \dfrac{{k\left( {k + 2} \right) + 1}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \dfrac{{{k^2} + 2k + 1}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \dfrac{{{{\left( {k + 1} \right)}^2}}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \dfrac{{\left( {k + 1} \right)}}{{\left( {k + 2} \right)}}.\end{array}\)

Vậy $(*)$ đúng với mọi số nguyên dương $n$.

Đáp án cần chọn là: b

Cách 2:

Ta có nhận xét sau: \(\dfrac{1}{{k\left( {k + 1} \right)}} = \dfrac{1}{k} - \dfrac{1}{{k + 1}}\,\,\forall k \in N^*\), do đó:

\({S_n} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{n\left( {n + 1} \right)}} = \dfrac{1}{1} - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + ... + \dfrac{1}{n} - \dfrac{1}{{n + 1}} = 1 - \dfrac{1}{{n + 1}} = \dfrac{n}{{n + 1}}\)

...

Bài tập có liên quan

Phương pháp quy nạp toán học Luyện Ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

zalo

Câu hỏi liên quan

Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với \(n = k\) thì ta cần chứng minh mệnh đề đúng đến:

Đối với bài toán chứng minh \(P\left( n \right)\) đúng với mọi \(n \ge p\) với \(p\) là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:

Dùng quy nạp chứng minh mệnh đề chứa biến \(P\left( n \right)\) đúng với mọi số tự nhiên $n \ge p$ (\(p\) là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề \(P\left( n \right)\) đúng với \(n = k\). Khẳng định nào sau đây là đúng?

Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến \(P\left( n \right)\) đúng với mọi số tự nhiên $n \ge p$ (\(p\) là một số tự nhiên), ta tiến hành hai bước:

\( \bullet \) Bước 1, kiểm tra mệnh đề \(P\left( n \right)\) đúng với \(n = p.\)

\( \bullet \) Bước 2, giả thiết mệnh đề \(P\left( n \right)\) đúng với số tự nhiên bất kỳ \(n = k \ge p\) và phải chứng minh rằng nó cũng đúng với \(n = k + 1.\)

Trong hai bước trên:

Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với \(n = k + 1\) thì ta cần chứng minh mệnh đề đúng với:

Một học sinh chứng minh mệnh đề ${\rm{''}}{8^n} + 1$ chia hết cho ${\rm{7, }}\forall n \in {\mathbb{N}^*}''$ \(\left( * \right)\) như sau:

\( \bullet \) Giả sử \(\left( * \right)\) đúng với \(n = k\), tức là ${8^k} + 1$ chia hết cho \(7.\)

\( \bullet \) Ta có: ${8^{k + 1}} + 1 = 8\left( {{8^k} + 1} \right) - 7$, kết hợp với giả thiết ${8^k} + 1$ chia hết cho \(7\) nên suy ra được ${8^{k + 1}} + 1$ chia hết cho \(7.\) Vậy đẳng thức \(\left( * \right)\) đúng với mọi \(n \in {\mathbb{N}^*}.\)

Khẳng định nào sau đây là đúng?

Với \(n \in {N^*}\), ta xét các mệnh đề: $P:$“\({7^n} + 5\) chia hết cho $2$”; $Q:$ “\({7^n} + 5\) chia hết cho $3$” và $R:$ “\({7^n} + 5\) chia hết cho $6$”. Số mệnh đề đúng trong các mệnh đề trên là:

Giá trị của tổng $S = 1-2 + 3-4 + ... - 2n + \left( {2n + 1} \right)$ là:

Với mọi số nguyên dương $n$, tổng \({S_n} = 1.2 + 2.3 + 3.4 + ... + n\left( {n + 1} \right)\) là:

Kí hiệu \(k! = k\left( {k - 1} \right)...2.1,\forall k \in {\mathbb{N}^*}\). Với \(n \in {\mathbb{N}^*}\), đặt \({S_n} = 1.1! + 2.2! + ... + n.n!\). Mệnh đề nào dưới đây là đúng?

Bất đẳng thức nào sau đây đúng? Với mọi số tự nhiên $n$ thỏa \(n \ge 3\) thì:

Giả sử $Q$ là tập con của tập hợp các số nguyên dương sao cho

a) \(k \in Q\)

b) \(n \in Q \Rightarrow n + 1 \in Q\,\,\forall n \ge k.\)

Cho tổng \({S_n} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{n\left( {n + 1} \right)}}\). Mệnh đề nào đúng?

Chọn mệnh đề đúng: Với mọi \(n \in {N^*}\) thì:

Với mọi số tự nhiên \(n \ge 2\), bất đẳng thức nào sau đây đúng?

Với mọi số nguyên dương $n$, tổng $2 + 5 + 8 + … + (3n – 1)$ là:

Bất đẳng thức nào sau đây đúng? Với mọi số nguyên dương $n$ thì:

So sánh \(\dfrac{{{a^n} + {b^n}}}{2}\) và \({\left( {\dfrac{{a + b}}{2}} \right)^n}\) , với \(a \ge 0,b \ge 0,n \in {N^*}\) ta được:

Từ khóa » Tính Tổng 1.2+2.3+3.4+...+n(n+1)